El Hariri El Nokab Mustapha, Sebakhy Khaled O
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Nanomaterials (Basel). 2021 Jun 4;11(6):1494. doi: 10.3390/nano11061494.
Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research.
固态核磁共振已被证明是一种用于研究各种化合物的化学结构、三维结构和动力学的通用技术。在纳米技术领域,特别是在薄膜领域,研究化学修饰、分子堆积、端链运动、距离测定以及溶剂-基质相互作用对于控制最终产品的性能和应用至关重要。尽管固态核磁共振具有原子水平的研究能力以及最近的技术进步,但由于对核磁共振能力的低估、可用性、大量的原子核和脉冲序列、对四极核缺乏灵敏度以及实验耗时等原因,在薄膜领域它仍然落后于其他光谱技术。本文将全面且批判性地回顾固态核磁共振在不同类型薄膜上所做的工作、超越传统的最先进核磁共振策略以及用于克服薄膜研究中技术问题的硬件设计。