Reif Bernd, Ashbrook Sharon E, Emsley Lyndon, Hong Mei
Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany.
School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-020-00002-1. Epub 2021 Jan 14.
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
固态核磁共振(NMR)光谱学是一种用于确定固体和半固体化学结构、三维结构及动力学的原子级方法。本入门介绍总结了应用于广泛固体系统的核磁共振基本原理。基本的核自旋相互作用以及磁场和射频脉冲对核自旋的影响与液态核磁共振相同。然而,由于固态中相互作用的各向异性,大多数高分辨率固态核磁共振谱是在魔角旋转(MAS)下测量的,这对提取结构和动力学信息所需的射频脉冲序列类型有深远影响。我们描述了用于研究生物大分子、有机材料和无机固体的最常见的魔角旋转核磁共振实验及数据分析方法。还介绍了灵敏度增强方法的持续发展,包括氢检测快速魔角旋转实验、动态核极化以及针对超高磁场定制的实验。我们重点介绍了固态核磁共振在生物和材料化学方面的最新应用。本入门介绍最后讨论了核磁共振在研究固体方面当前的局限性,并指出了未来的发展方向,以进一步增强这种精密光谱学在新应用中的能力。