Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
Agricultural Engineering Department, Faculty of Agriculture, Menoufia University, Shebin El Koum 32514, Egypt.
Sensors (Basel). 2021 Jun 8;21(12):3942. doi: 10.3390/s21123942.
Drought is the most severe problem for agricultural production, and the intensity of this problem is increasing in most cultivated areas around the world. Hence improving water productivity is the primary purpose of sustainable agriculture. This study aimed to use cloud IoT solutions to control a modern subsurface irrigation system for improving irrigation management of date palms in arid regions. To achieve this goal, we designed, constructed, and validated the performance of a fully automated controlled subsurface irrigation system (CSIS) to monitor and control the irrigation water amount remotely. The CSIS is based on an autonomous sensors network to instantly collect the climatic parameters and volumetric soil water content in the study area. Therefore, we employed the ThingSpeak cloud platform to host sensor readings, perform algorithmic analysis, instant visualize the live data, create event-based alerts to the user, and send instructions to the IoT devices. The validation of the CSIS proved that automatically irrigating date palm trees controlled by the sensor-based irrigation scheduling (S-BIS) is more efficient than the time-based irrigation scheduling (T-BIS). The S-BIS provided the date palm with the optimum irrigation water amount at the opportune time directly in the functional root zone. Generally, the S-BIS and T-BIS of CSIS reduced the applied irrigation water amount by 64.1% and 61.2%, respectively, compared with traditional surface irrigation (TSI). The total annual amount of applied irrigation water for CSIS with S-BIS method, CSIS with T-BIS method, and TSI was 21.04, 22.76, and 58.71 m palm, respectively. The water productivity at the CSIS with S-BIS (1.783 kg m) and T-BIS (1.44 kg m) methods was significantly higher compared to the TSI (0.531 kg m). The CSIS with the S-BIS method kept the volumetric water content in the functional root zone next to the field capacity compared to the T-BIS method. The deigned CSIS with the S-BIS method characterized by the positive impact on the irrigation water management and enhancement on fruit yield of the date palm is quite proper for date palm irrigation in the arid regions.
干旱是农业生产中最严重的问题,而且在世界上大多数耕作区,这个问题的强度正在增加。因此,提高水生产力是可持续农业的首要目标。本研究旨在利用云物联网解决方案来控制现代地下灌溉系统,以改善干旱地区的枣椰树灌溉管理。为了实现这一目标,我们设计、构建和验证了完全自动化的地下灌溉控制系统(CSIS)的性能,以远程监测和控制灌溉水量。CSIS 基于一个自主传感器网络,即时采集研究区域的气候参数和体积土壤含水量。因此,我们利用 ThingSpeak 云平台来托管传感器读数,进行算法分析,实时可视化实时数据,为用户创建基于事件的警报,并向物联网设备发送指令。CSIS 的验证证明,由基于传感器的灌溉调度(S-BIS)控制的自动灌溉枣椰树比基于时间的灌溉调度(T-BIS)更有效。S-BIS 直接在功能根区为枣椰树提供最佳灌溉水量。一般来说,CSIS 的 S-BIS 和 T-BIS 与传统的地面灌溉(TSI)相比,分别减少了 64.1%和 61.2%的灌溉用水量。采用 S-BIS 方法的 CSIS、采用 T-BIS 方法的 CSIS 和 TSI 的总年灌溉用水量分别为 21.04、22.76 和 58.71 m ³/株。采用 S-BIS(1.783 kg m)和 T-BIS(1.44 kg m)方法的 CSIS 的水分生产率明显高于 TSI(0.531 kg m)。与 T-BIS 方法相比,采用 S-BIS 方法的 CSIS 使功能根区的体积含水量接近田间持水量。采用 S-BIS 方法的设计 CSIS 对枣椰树的灌溉管理和提高果实产量具有积极影响,非常适合干旱地区的枣椰树灌溉。