Suppr超能文献

基于深度学习利用内镜超声鉴别胰腺黏液性囊性肿瘤和浆液性囊性肿瘤

Deep Learning-Based Differentiation between Mucinous Cystic Neoplasm and Serous Cystic Neoplasm in the Pancreas Using Endoscopic Ultrasonography.

作者信息

Nguon Leang Sim, Seo Kangwon, Lim Jung-Hyun, Song Tae-Jun, Cho Sung-Hyun, Park Jin-Seok, Park Suhyun

机构信息

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea.

Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Korea.

出版信息

Diagnostics (Basel). 2021 Jun 8;11(6):1052. doi: 10.3390/diagnostics11061052.

Abstract

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817-0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.

摘要

黏液性囊性肿瘤(MCN)和浆液性囊性肿瘤(SCN)占孤立性胰腺囊性肿瘤(PCN)的很大一部分。在本研究中,我们使用ResNet50实现了一个卷积神经网络(CNN)模型,以区分MCN和SCN。训练数据是从两家不同医院的59例MCN患者和49例SCN患者中回顾性收集的。使用数据增强来增加训练数据集的规模并提高其质量。在训练选定层时,通过采用迁移学习中的预训练模型来使用微调训练方法。通过改变内镜超声(EUS)图像的大小和位置来进行网络测试,以评估网络的区分性能。所提出的网络模型实现了高达82.75%的准确率和0.88(95%CI:0.817 - 0.930)的曲线下面积(AUC)得分。仅使用EUS图像的深度学习网络在决策中的性能与使用EUS图像并结合支持性临床信息的传统人工决策相当。梯度加权类激活映射(Grad-CAM)证实网络模型准确地从囊肿区域学习到了特征。本研究证明了使用深度学习网络模型诊断MCN和SCN的可行性。需要使用更多数据集进行进一步改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dc2/8229855/36983ead565a/diagnostics-11-01052-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验