Li Jin, Yin Wei, Wang Yuanjun
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
Department of Radiology, Changhai Hospital, The Naval Military Medical University, Shanghai, China.
J Xray Sci Technol. 2023;31(1):167-180. doi: 10.3233/XST-221281.
Pancreatic cancer is a highly lethal disease. The preoperative distinction between pancreatic serous cystic neoplasm (SCN) and mucinous cystic neoplasm (MCN) remains a clinical challenge.
The goal of this study is to provide clinicians with supportive advice and avoid overtreatment by constructing a convolutional neural network (CNN) classifier to automatically identify pancreatic cancer using computed tomography (CT) images.
We construct a CNN model using a dataset of 6,173 CT images obtained from 107 pathologically confirmed pancreatic cancer patients at Shanghai Changhai Hospital from January 2017 to February 2022. We divide CT slices into three categories namely, SCN, MCN, and no tumor, to train the DenseNet201-based CNN model with multi-head spatial attention mechanism (MSAM-DenseNet201). The attention module enhances the network's attention to local features and effectively improves the network performance. The trained model is applied to process all CT image slices and finally realize the two categories classification of MCN and SCN patients through a joint voting strategy.
Using a 10-fold cross validation method, this new MSAM-DenseNet201 model achieves a classification accuracy of 92.52%, a precision of 92.16%, a sensitivity of 92.16%, and a specificity of 92.86%, respectively.
This study demonstrates the feasibility of using a deep learning network or classification model to help diagnose MCN and SCN cases. This, the new method has great potential for developing new computer-aided diagnosis systems and applying in future clinical practice.
胰腺癌是一种致死率很高的疾病。术前区分胰腺浆液性囊性肿瘤(SCN)和黏液性囊性肿瘤(MCN)仍然是一项临床挑战。
本研究的目的是通过构建一个卷积神经网络(CNN)分类器,利用计算机断层扫描(CT)图像自动识别胰腺癌,为临床医生提供支持性建议并避免过度治疗。
我们使用从2017年1月至2022年2月在上海长海医院107例经病理证实的胰腺癌患者中获取的6173张CT图像数据集构建了一个CNN模型。我们将CT切片分为三类,即SCN、MCN和无肿瘤,以训练基于DenseNet201的具有多头空间注意力机制(MSAM-DenseNet201)的CNN模型。注意力模块增强了网络对局部特征的关注并有效提高了网络性能。将训练好的模型应用于处理所有CT图像切片,最后通过联合投票策略实现MCN和SCN患者的两类分类。
使用10折交叉验证方法,这种新的MSAM-DenseNet201模型的分类准确率分别为92.52%,精确率为92.16%,灵敏度为92.16%,特异性为92.86%。
本研究证明了使用深度学习网络或分类模型帮助诊断MCN和SCN病例的可行性。因此,这种新方法在开发新的计算机辅助诊断系统以及未来临床实践应用方面具有巨大潜力。