Key Laboratory of Convergent Media and Intelligent Technology (Communication University of China), Ministry of Education, Beijing 100024, China.
School of Information and Communication Engineering, Communication University of China, Beijing 100024, China.
Sensors (Basel). 2021 Jun 8;21(12):3963. doi: 10.3390/s21123963.
Salient regions provide important cues for scene understanding to the human vision system. However, whether the detected salient regions are helpful in image blur estimation is unknown. In this study, a salient region guided blind image sharpness assessment (BISA) framework is proposed, and the effect of the detected salient regions on the BISA performance is investigated. Specifically, three salient region detection (SRD) methods and ten BISA models are jointly explored, during which the output saliency maps from SRD methods are re-organized as the input of BISA models. Consequently, the change in BISA metric values can be quantified and then directly related to the difference in BISA model inputs. Finally, experiments are conducted on three Gaussian blurring image databases, and the BISA prediction performance is evaluated. The comparison results indicate that salient region input can help achieve a close and sometimes superior performance to a BISA model over the whole image input. When using the center region input as the baseline, the detected salient regions from the saliency optimization from robust background detection (SORBD) method lead to consistently better score prediction, regardless of the BISA model. Based on the proposed hybrid framework, this study reveals that saliency detection benefits image blur estimation, while how to properly incorporate SRD methods and BISA models to improve the score prediction will be explored in our future work.
显著区域为人类视觉系统提供了重要的场景理解线索。然而,检测到的显著区域是否有助于图像模糊估计尚不清楚。在本研究中,提出了一种显著区域引导的盲图像锐度评估(BISA)框架,并研究了检测到的显著区域对 BISA 性能的影响。具体来说,共同探索了三种显著区域检测(SRD)方法和十种 BISA 模型,其中 SRD 方法的输出显著图被重新组织为 BISA 模型的输入。因此,可以量化 BISA 指标值的变化,并直接与 BISA 模型输入的差异相关联。最后,在三个高斯模糊图像数据库上进行了实验,并评估了 BISA 预测性能。比较结果表明,显著区域输入可以帮助实现接近甚至有时优于整个图像输入的 BISA 模型的性能。当使用中心区域输入作为基线时,来自稳健背景检测的显著优化(SORBD)方法的检测到的显著区域导致了始终更好的得分预测,而与 BISA 模型无关。基于所提出的混合框架,本研究表明显著检测有益于图像模糊估计,而如何正确结合 SRD 方法和 BISA 模型以提高评分预测将是我们未来工作的重点。