Suppr超能文献

深度学习时代的显著目标检测:深入调查。

Salient Object Detection in the Deep Learning Era: An In-Depth Survey.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Jun;44(6):3239-3259. doi: 10.1109/TPAMI.2021.3051099. Epub 2022 May 5.

Abstract

As an essential problem in computer vision, salient object detection (SOD) has attracted an increasing amount of research attention over the years. Recent advances in SOD are predominantly led by deep learning-based solutions (named deep SOD). To enable in-depth understanding of deep SOD, in this paper, we provide a comprehensive survey covering various aspects, ranging from algorithm taxonomy to unsolved issues. In particular, we first review deep SOD algorithms from different perspectives, including network architecture, level of supervision, learning paradigm, and object-/instance-level detection. Following that, we summarize and analyze existing SOD datasets and evaluation metrics. Then, we benchmark a large group of representative SOD models, and provide detailed analyses of the comparison results. Moreover, we study the performance of SOD algorithms under different attribute settings, which has not been thoroughly explored previously, by constructing a novel SOD dataset with rich attribute annotations covering various salient object types, challenging factors, and scene categories. We further analyze, for the first time in the field, the robustness of SOD models to random input perturbations and adversarial attacks. We also look into the generalization and difficulty of existing SOD datasets. Finally, we discuss several open issues of SOD and outline future research directions. All the saliency prediction maps, our constructed dataset with annotations, and codes for evaluation are publicly available at https://github.com/wenguanwang/SODsurvey.

摘要

作为计算机视觉中的一个基本问题,显著目标检测(SOD)近年来引起了越来越多的研究关注。近年来,SOD 的主要进展是基于深度学习的解决方案(称为深度 SOD)。为了深入了解深度 SOD,本文从算法分类、未解决的问题等各个方面对其进行了全面的综述。特别是,我们首先从网络架构、监督程度、学习范例和目标/实例级检测等不同角度回顾了深度 SOD 算法。之后,我们总结和分析了现有的 SOD 数据集和评估指标。然后,我们基准测试了一组具有代表性的 SOD 模型,并对比较结果进行了详细分析。此外,我们通过构建一个具有丰富属性注释的新 SOD 数据集来研究不同属性设置下 SOD 算法的性能,该数据集涵盖了各种显著目标类型、挑战性因素和场景类别,这在以前的研究中并未得到深入探讨。我们还首次分析了 SOD 模型对随机输入扰动和对抗攻击的鲁棒性。我们还研究了现有 SOD 数据集的泛化和难度。最后,我们讨论了 SOD 的几个开放问题,并概述了未来的研究方向。所有的显著预测图、带有注释的我们构建的数据集和评估代码都可以在 https://github.com/wenguanwang/SODsurvey 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验