Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China.
Sensors (Basel). 2021 Jan 27;21(3):838. doi: 10.3390/s21030838.
The effectiveness of depth information in saliency detection has been fully proved. However, it is still worth exploring how to utilize the depth information more efficiently. Erroneous depth information may cause detection failure, while non-salient objects may be closer to the camera which also leads to erroneously emphasis on non-salient regions. Moreover, most of the existing RGB-D saliency detection models have poor robustness when the salient object touches the image boundaries. To mitigate these problems, we propose a multi-stage saliency detection model with the bilateral absorbing Markov chain guided by depth information. The proposed model progressively extracts the saliency cues with three level (low-, mid-, and high-level) stages. First, we generate low-level saliency cues by explicitly combining color and depth information. Then, we design a bilateral absorbing Markov chain to calculate mid-level saliency maps. In mid-level, to suppress boundary touch problem, we present the background seed screening mechanism (BSSM) for improving the construction of the two-layer sparse graph and better selecting background-based absorbing nodes. Furthermore, the cross-modal multi-graph learning model (CMLM) is designed to fully explore the intrinsic complementary relationship between color and depth information. Finally, to obtain a more highlighted and homogeneous saliency map in high-level, we structure a depth-guided optimization module which combines cellular automata and suppression-enhancement function pair. This optimization module refines the saliency map in color space and depth space, respectively. Comprehensive experiments on three challenging benchmark datasets demonstrate the effectiveness of our proposed method both qualitatively and quantitatively.
深度信息在显著度检测中的有效性已得到充分证明。然而,如何更有效地利用深度信息仍然值得探索。错误的深度信息可能导致检测失败,而不显著的物体可能更接近相机,这也导致错误地强调不显著的区域。此外,大多数现有的 RGB-D 显著度检测模型在显著物体触及图像边界时鲁棒性较差。为了解决这些问题,我们提出了一种基于深度信息的双边吸收马尔可夫链引导的多阶段显著度检测模型。该模型通过三个层次(低、中、高层次)逐步提取显著线索。首先,我们通过明确结合颜色和深度信息生成低级显著线索。然后,我们设计了双边吸收马尔可夫链来计算中级显著图。在中级阶段,为了抑制边界接触问题,我们提出了背景种子筛选机制(BSSM),用于改进两层稀疏图的构建和更好地选择基于背景的吸收节点。此外,设计了跨模态多图学习模型(CMLM),以充分挖掘颜色和深度信息之间的内在互补关系。最后,为了在高层次获得更突出和均匀的显著图,我们构建了一个深度引导的优化模块,该模块结合了元胞自动机和抑制增强函数对。该优化模块分别在颜色空间和深度空间细化显著图。在三个具有挑战性的基准数据集上的综合实验证明了我们提出的方法在定性和定量方面的有效性。