Şenöz İsmail, van de Laar Thijs, Bagaev Dmitry, de Vries Bert
Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
GN Hearing, JF Kennedylaan 2, 5612 AB Eindhoven, The Netherlands.
Entropy (Basel). 2021 Jun 24;23(7):807. doi: 10.3390/e23070807.
Accurate evaluation of Bayesian model evidence for a given data set is a fundamental problem in model development. Since evidence evaluations are usually intractable, in practice variational free energy (VFE) minimization provides an attractive alternative, as the VFE is an upper bound on negative model log-evidence (NLE). In order to improve tractability of the VFE, it is common to manipulate the constraints in the search space for the posterior distribution of the latent variables. Unfortunately, constraint manipulation may also lead to a less accurate estimate of the NLE. Thus, constraint manipulation implies an engineering trade-off between tractability and accuracy of model evidence estimation. In this paper, we develop a unifying account of constraint manipulation for variational inference in models that can be represented by a (Forney-style) factor graph, for which we identify the Bethe Free Energy as an approximation to the VFE. We derive well-known message passing algorithms from first principles, as the result of minimizing the constrained Bethe Free Energy (BFE). The proposed method supports evaluation of the BFE in factor graphs for model scoring and development of new message passing-based inference algorithms that potentially improve evidence estimation accuracy.
对于给定数据集,准确评估贝叶斯模型证据是模型开发中的一个基本问题。由于证据评估通常难以处理,在实际应用中,变分自由能(VFE)最小化提供了一种有吸引力的替代方法,因为VFE是负模型对数证据(NLE)的上界。为了提高VFE的可处理性,通常会在潜在变量后验分布的搜索空间中操纵约束条件。不幸的是,约束操纵也可能导致对NLE的估计不够准确。因此,约束操纵意味着在模型证据估计的可处理性和准确性之间进行工程权衡。在本文中,我们针对可由(福尼风格)因子图表示的模型中的变分推理,对约束操纵进行了统一阐述,为此我们将贝叶斯自由能确定为VFE的近似值。我们从第一原理推导出了著名的消息传递算法,这是最小化约束贝叶斯自由能(BFE)的结果。所提出的方法支持在因子图中评估BFE,用于模型评分以及开发可能提高证据估计准确性的基于新消息传递的推理算法。