Suppr超能文献

用于减轻智慧城市中物联网节点数据负载的无损压缩方法的深度学习解决方案

The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities.

作者信息

Nasif Ammar, Othman Zulaiha Ali, Sani Nor Samsiah

机构信息

Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia.

出版信息

Sensors (Basel). 2021 Jun 20;21(12):4223. doi: 10.3390/s21124223.

Abstract

Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Huffman based on deep learning concepts using weights, pruning, and pooling in the neural network. The proposed algorithm is believed to obtain a better compression ratio. Additionally, in this paper, we also discuss the challenges of applying the proposed algorithm to IoT data compression due to the limitations of IoT memory and IoT processor, which later it can be implemented in IoT networks.

摘要

如今,网络对于智慧城市项目至关重要,因为它提供了一个人和物相互连接的环境。本文介绍了智慧城市发展的一系列影响因素,包括作为网络基础设施的物联网技术。物联网节点的增加导致数据流增加,这是物联网网络潜在的故障源。物联网网络面临的最大挑战是物联网可能没有足够的内存来处理物联网网络内的所有交易数据。本文旨在提出一种潜在的压缩方法来减少物联网网络的数据流量。因此,我们研究了各种无损压缩算法,如基于熵或字典的算法以及通用压缩方法,以确定哪种算法或方法符合物联网规范。此外,本研究使用熵(霍夫曼、自适应霍夫曼)和字典(LZ77、LZ78)以及五种不同类型的物联网数据流量数据集进行压缩实验。虽然上述算法可以缓解物联网数据流量,但自适应霍夫曼算法给出了最佳的压缩效果。因此,在本文中,我们旨在通过基于深度学习概念,利用神经网络中的权重、剪枝和池化来改进自适应霍夫曼算法,从而提出一种针对物联网数据流量的概念性压缩方法。预计所提出的算法能获得更好的压缩率。此外,在本文中,我们还讨论了由于物联网内存和物联网处理器的限制,将所提出的算法应用于物联网数据压缩所面临的挑战,该算法随后可在物联网网络中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/590b/8235183/3227d9cf5b73/sensors-21-04223-g001.jpg

相似文献

4
Semantic Framework of Internet of Things for Smart Cities: Case Studies.
Sensors (Basel). 2016 Sep 14;16(9):1501. doi: 10.3390/s16091501.
5
IoT-Enabled Smart Cities: Evolution and Outlook.
Sensors (Basel). 2021 Jun 30;21(13):4511. doi: 10.3390/s21134511.
7
Efficient Data Management in Agricultural IoT: Compression, Security, and MQTT Protocol Analysis.
Sensors (Basel). 2024 May 30;24(11):3517. doi: 10.3390/s24113517.
8
A Dynamic Plane Prediction Method Using the Extended Frame in Smart Dust IoT Environments.
Sensors (Basel). 2020 Mar 2;20(5):1364. doi: 10.3390/s20051364.
9
Cyberattacks Detection in IoT-Based Smart City Applications Using Machine Learning Techniques.
Int J Environ Res Public Health. 2020 Dec 14;17(24):9347. doi: 10.3390/ijerph17249347.
10
Efficient Traffic Engineering in an NFV Enabled IoT System.
Sensors (Basel). 2020 Jun 4;20(11):3198. doi: 10.3390/s20113198.

引用本文的文献

1
Lossless Data Compression for Time-Series Sensor Data Based on Dynamic Bit Packing.
Sensors (Basel). 2023 Oct 19;23(20):8575. doi: 10.3390/s23208575.
2
An optimal algorithm for mmWave 5G wireless networks based on neural network.
Heliyon. 2023 Jun 23;9(6):e17580. doi: 10.1016/j.heliyon.2023.e17580. eCollection 2023 Jun.
3
Automatic Malignant and Benign Skin Cancer Classification Using a Hybrid Deep Learning Approach.
Diagnostics (Basel). 2022 Oct 12;12(10):2472. doi: 10.3390/diagnostics12102472.
4
DeepCompNet: A Novel Neural Net Model Compression Architecture.
Comput Intell Neurosci. 2022 Feb 22;2022:2213273. doi: 10.1155/2022/2213273. eCollection 2022.

本文引用的文献

1
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.
Chaos Solitons Fractals. 2020 Nov;140:110121. doi: 10.1016/j.chaos.2020.110121. Epub 2020 Jul 15.
2
Offloading and Transmission Strategies for IoT Edge Devices and Networks.
Sensors (Basel). 2019 Feb 18;19(4):835. doi: 10.3390/s19040835.
3
Data Compression Based on Stacked RBM-AE Model for Wireless Sensor Networks.
Sensors (Basel). 2018 Dec 4;18(12):4273. doi: 10.3390/s18124273.
4
Long short-term memory RNN for biomedical named entity recognition.
BMC Bioinformatics. 2017 Oct 30;18(1):462. doi: 10.1186/s12859-017-1868-5.
6
Data management for the internet of things: design primitives and solution.
Sensors (Basel). 2013 Nov 14;13(11):15582-612. doi: 10.3390/s131115582.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验