Suppr超能文献

物联网边缘设备和网络的卸载和传输策略。

Offloading and Transmission Strategies for IoT Edge Devices and Networks.

机构信息

School of Electrical Engineering, Korea University, Seoul 02841, Korea.

出版信息

Sensors (Basel). 2019 Feb 18;19(4):835. doi: 10.3390/s19040835.

Abstract

We present a machine and deep learning method to offload trained deep learning model and transmit packets efficiently on resource-constrained internet of things (IoT) edge devices and networks. Recently, the types of IoT devices have become diverse and the volume of data has been increasing, such as images, voice, and time-series sensory signals generated by various devices. However, transmitting large amounts of data to a server or cloud becomes expensive owing to limited bandwidth, and leads to latency for time-sensitive operations. Therefore, we propose a novel offloading and transmission policy considering energy-efficiency, execution time, and the number of generated packets for resource-constrained IoT edge devices that run a deep learning model and a reinforcement learning method to find an optimal contention window size for effective channel access using a contention-based medium access control (MAC) protocol. A Reinforcement learning is used to improve the performance of the applied MAC protocol. Our proposed method determines the offload and transmission strategies that are better to directly send fragmented packets of raw data or to send the extracted feature vector or the final output of deep learning networks, considering the operation performance and power consumption of the resource-constrained microprocessor, as well as the power consumption of the radio transceiver and latency for transmitting the all the generated packets. In the performance evaluation, we measured the performance parameters of ARM Cortex-M4 and Cortex-M7 processors for the network simulation. The evaluation results show that our proposed adaptive channel access and learning-based offload and transmission methods outperform conventional role-based channel access schemes. They transmit packets of raw data and are effective for IoT edge devices and network protocols.

摘要

我们提出了一种机器和深度学习方法,用于在资源受限的物联网 (IoT) 边缘设备和网络上有效地卸载训练好的深度学习模型和传输数据包。最近,IoT 设备的类型变得多样化,数据量也在增加,例如各种设备生成的图像、语音和时间序列感测信号。然而,由于带宽有限,将大量数据传输到服务器或云会变得昂贵,并且会导致对时间敏感的操作产生延迟。因此,我们针对运行深度学习模型的资源受限的 IoT 边缘设备提出了一种新的考虑能量效率、执行时间和生成的数据包数量的卸载和传输策略,以及一种强化学习方法,用于使用基于竞争的介质访问控制 (MAC) 协议找到有效信道接入的最佳竞争窗口大小。强化学习用于提高应用 MAC 协议的性能。我们提出的方法根据资源受限的微处理器的操作性能和功耗以及无线电收发器的功耗和传输所有生成的数据包的延迟,确定直接发送原始数据的分段数据包或发送提取的特征向量或深度学习网络的最终输出的卸载和传输策略。在性能评估中,我们针对网络模拟测量了 ARM Cortex-M4 和 Cortex-M7 处理器的性能参数。评估结果表明,我们提出的自适应信道访问和基于学习的卸载和传输方法优于传统的基于角色的信道访问方案。它们传输原始数据的数据包,对 IoT 边缘设备和网络协议有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ad/6412226/15bde251b862/sensors-19-00835-g001.jpg

相似文献

1
Offloading and Transmission Strategies for IoT Edge Devices and Networks.
Sensors (Basel). 2019 Feb 18;19(4):835. doi: 10.3390/s19040835.
3
A decision-making mechanism for task offloading using learning automata and deep learning in mobile edge networks.
Heliyon. 2023 Dec 13;10(1):e23651. doi: 10.1016/j.heliyon.2023.e23651. eCollection 2024 Jan 15.
5
Flexible computation offloading in a fuzzy-based mobile edge orchestrator for IoT applications.
J Cloud Comput (Heidelb). 2020;9(1):66. doi: 10.1186/s13677-020-00211-9. Epub 2020 Nov 25.
8
Efficient Multiuser Computation for Mobile-Edge Computing in IoT Application Using Optimization Algorithm.
Appl Bionics Biomech. 2021 Nov 10;2021:9014559. doi: 10.1155/2021/9014559. eCollection 2021.

引用本文的文献

1
Computation Offloading Game for Multi-Channel Wireless Sensor Networks.
Sensors (Basel). 2022 Nov 11;22(22):8718. doi: 10.3390/s22228718.
3
Nanosystems, Edge Computing, and the Next Generation Computing Systems.
Sensors (Basel). 2019 Sep 19;19(18):4048. doi: 10.3390/s19184048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验