改善骨愈合的策略:创新型外科植入物与骨支架的纳米/微观形貌
Strategies to Improve Bone Healing: Innovative Surgical Implants Meet Nano-/Micro-Topography of Bone Scaffolds.
作者信息
Wähnert Dirk, Greiner Johannes, Brianza Stefano, Kaltschmidt Christian, Vordemvenne Thomas, Kaltschmidt Barbara
机构信息
Department of Trauma and Orthopedic Surgery, Campus Bielefeld-Bethel, Burgsteig 13, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, 33617 Bielefeld, Germany.
Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany.
出版信息
Biomedicines. 2021 Jun 28;9(7):746. doi: 10.3390/biomedicines9070746.
Successful fracture healing is dependent on an optimal mechanical and biological environment at the fracture site. Disturbances in fracture healing (non-union) or even critical size bone defects, where void volume is larger than the self-healing capacity of bone tissue, are great challenges for orthopedic surgeons. To address these challenges, new surgical implant concepts have been recently developed to optimize mechanical conditions. First, this review article discusses the mechanical environment on bone and fracture healing. In this context, a new implant concept, variable fixation technology, is introduced. This implant has the unique ability to change its mechanical properties from "rigid" to "dynamic" over the time of fracture healing. This leads to increased callus formation, a more homogeneous callus distribution and thus improved fracture healing. Second, recent advances in the nano- and micro-topography of bone scaffolds for guiding osteoinduction will be reviewed, particularly emphasizing the mimicry of natural bone. We summarize that an optimal scaffold should comprise micropores of 50-150 µm diameter allowing vascularization and migration of stem cells as well as nanotopographical osteoinductive cues, preferably pores of 30 nm diameter. Next to osteoinduction, such nano- and micro-topographical cues may also reduce inflammation and possess an antibacterial activity to further promote bone regeneration.
成功的骨折愈合取决于骨折部位的最佳力学和生物学环境。骨折愈合的干扰(骨不连)甚至临界尺寸的骨缺损(即空隙体积大于骨组织的自我愈合能力),对骨科医生来说都是巨大的挑战。为应对这些挑战,最近开发了新的手术植入物概念以优化力学条件。首先,这篇综述文章讨论了骨骼上的力学环境和骨折愈合。在此背景下,引入了一种新的植入物概念——可变固定技术。这种植入物具有独特的能力,在骨折愈合过程中其力学性能可从“刚性”转变为“动态”。这会导致骨痂形成增加、骨痂分布更均匀,从而改善骨折愈合。其次,将综述用于引导骨诱导的骨支架的纳米和微观形貌方面的最新进展,尤其强调对天然骨的模仿。我们总结认为,最佳的支架应包含直径为50 - 150微米的微孔,以允许血管化和干细胞迁移,以及纳米形貌的骨诱导线索,最好是直径为30纳米的孔隙。除了骨诱导作用外,这种纳米和微观形貌线索还可能减轻炎症并具有抗菌活性,以进一步促进骨再生。