Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia.
Institute of Technical Sciences of SASA, Knez Mihailova 35, 11000 Belgrade, Serbia.
Biosensors (Basel). 2021 Jun 12;11(6):194. doi: 10.3390/bios11060194.
In order to improve the interpretation of measurement results and to achieve the optimal performance of microfluidic biosensors, advanced mathematical models of their time response and noise are needed. The random nature of adsorption-desorption and mass transfer (MT) processes that generate the sensor response makes the sensor output signal inherently stochastic and necessitates the use of a stochastic approach in sensor response analysis. We present a stochastic model of the sensor time response, which takes into account the coupling of adsorption-desorption and MT processes. It is used for the analysis of response kinetics and ultimate noise performance of protein biosensors. We show that slow MT not only decelerates the response kinetics, but also increases the noise and decreases the sensor's maximal achievable signal-to-noise ratio, thus degrading the ultimate sensor performance, including the minimal detectable/quantifiable analyte concentration. The results illustrate the significance of the presented model for the correct interpretation of measurement data, for the estimation of sensors' noise performance metrics important for reliable analyte detection/quantification, as well as for sensor optimization in terms of the lower detection/quantification limit. They are also incentives for the further investigation of the MT influence in nanoscale sensors, as a possible cause of false-negative results in analyte detection experiments.
为了提高测量结果的解释能力并实现微流控生物传感器的最佳性能,需要对其时间响应和噪声进行先进的数学建模。产生传感器响应的吸附-解吸和质量传输(MT)过程的随机性使得传感器输出信号本质上是随机的,因此需要在传感器响应分析中采用随机方法。我们提出了一种传感器时间响应的随机模型,该模型考虑了吸附-解吸和 MT 过程的耦合。它用于分析蛋白质生物传感器的响应动力学和最终噪声性能。我们表明,缓慢的 MT 不仅会降低响应动力学的速度,还会增加噪声并降低传感器的最大可实现信噪比,从而降低最终传感器性能,包括最小可检测/可量化的分析物浓度。研究结果表明,所提出的模型对于正确解释测量数据、估计对于可靠的分析物检测/定量很重要的传感器噪声性能指标,以及在降低检测/定量限方面对传感器进行优化具有重要意义。这些结果还激励进一步研究 MT 在纳米传感器中的影响,因为它可能是导致分析物检测实验中出现假阴性结果的原因。