Suppr超能文献

电酶谷氨酸生物传感器的详细模型,以帮助传感器优化和在体内应用。

A Detailed Model of Electroenzymatic Glutamate Biosensors To Aid in Sensor Optimization and in Applications in Vivo.

机构信息

Chemical and Biomolecular Engineering Department, University of California, Los Angeles , Los Angeles, California 90095-1592, United States.

出版信息

ACS Chem Neurosci. 2018 Feb 21;9(2):241-251. doi: 10.1021/acschemneuro.7b00262. Epub 2017 Nov 10.

Abstract

Simulations conducted with a detailed model of glutamate biosensor performance describe the observed sensor performance well, illustrate the limits of sensor performance, and suggest a path toward sensor optimization. Glutamate is the most important excitatory neurotransmitter in the brain, and electroenzymatic sensors have emerged as a useful tool for the monitoring of glutamate signaling in vivo. However, the utility of these sensors currently is limited by their sensitivity and response time. A mathematical model of a typical glutamate biosensor consisting of a Pt electrode coated with a permselective polymer film and a top layer of cross-linked glutamate oxidase has been constructed in terms of differential material balances on glutamate, HO, and O in one spatial dimension. Simulations suggest that reducing thicknesses of the permselective polymer and enzyme layers can increase sensitivity ∼6-fold and reduce response time ∼7-fold, and thereby improve resolution of transient glutamate signals. At currently employed enzyme layer thicknesses, both intrinsic enzyme kinetics and enzyme deactivation likely are masked by mass transfer. However, O-dependence studies show essentially no reduction in signal at the lowest anticipated O concentrations for expected glutamate concentrations in the brain and that O transport limitations in vitro are anticipated only at glutamate concentrations in the mM range. Finally, the limitations of current biosensors in monitoring glutamate transients is simulated and used to illustrate the need for optimized biosensors to report glutamate signaling accurately on a subsecond time scale. This work demonstrates how a detailed model can be used to guide optimization of electroenzymatic sensors similar to that for glutamate and to ensure appropriate interpretation of data gathered using such biosensors.

摘要

利用谷氨酸生物传感器性能的详细模型进行的模拟很好地描述了观察到的传感器性能,说明了传感器性能的限制,并提出了一种传感器优化的途径。谷氨酸是大脑中最重要的兴奋性神经递质,电酶传感器已成为监测体内谷氨酸信号的有用工具。然而,这些传感器的实用性目前受到其灵敏度和响应时间的限制。根据在一个空间维度上的谷氨酸、HO 和 O 的差分物质平衡,构建了一个由涂有选择性聚合物膜和交联谷氨酸氧化酶顶层的 Pt 电极组成的典型谷氨酸生物传感器的数学模型。模拟表明,减小选择性聚合物和酶层的厚度可以将灵敏度提高约 6 倍,并将响应时间缩短约 7 倍,从而提高瞬态谷氨酸信号的分辨率。在目前使用的酶层厚度下,内在酶动力学和酶失活都可能被传质所掩盖。然而,O 依赖性研究表明,在预期大脑中谷氨酸浓度下预期的最低 O 浓度下,信号几乎没有减少,并且体外 O 传输限制仅预计在 mM 范围内的谷氨酸浓度下出现。最后,模拟了当前生物传感器在监测谷氨酸瞬变方面的局限性,并说明了需要优化的生物传感器来准确报告亚秒级时间范围内的谷氨酸信号。这项工作展示了如何使用详细模型来指导类似于谷氨酸的电酶传感器的优化,并确保对使用此类生物传感器收集的数据进行适当的解释。

相似文献

引用本文的文献

2
Enzymatic Polymer Brush Interfaces for Electrochemical Sensing in Biofluids.用于生物流体中电化学传感的酶促聚合物刷界面
ACS Appl Bio Mater. 2025 May 19;8(5):4008-4019. doi: 10.1021/acsabm.5c00146. Epub 2025 Apr 23.

本文引用的文献

5
Electrochemical Analysis of Neurotransmitters.神经递质的电化学分析
Annu Rev Anal Chem (Palo Alto Calif). 2015;8:239-61. doi: 10.1146/annurev-anchem-071114-040426. Epub 2015 May 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验