Suppr超能文献

考虑时间窗口的状态集序列模式挖掘及模式的周期性分析

Status Set Sequential Pattern Mining Considering Time Windows and Periodic Analysis of Patterns.

作者信息

Zhou Shenghan, Liu Houxiang, Chen Bang, Hou Wenkui, Ji Xinpeng, Zhang Yue, Chang Wenbing, Xiao Yiyong

机构信息

School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China.

出版信息

Entropy (Basel). 2021 Jun 11;23(6):738. doi: 10.3390/e23060738.

Abstract

The traditional sequential pattern mining method is carried out considering the whole time period and often ignores the sequential patterns that only occur in local time windows, as well as possible periodicity. Therefore, in order to overcome the limitations of traditional methods, this paper proposes status set sequential pattern mining with time windows (SSPMTW). In contrast to traditional methods, the item status is considered, and time windows, minimum confidence, minimum coverage, minimum factor set ratios and other constraints are added to mine more valuable rules in local time windows. The periodicity of these rules is also analyzed. According to the proposed method, this paper improves the Apriori algorithm, proposes the TW-Apriori algorithm, and explains the basic idea of the algorithm. Then, the feasibility, validity and efficiency of the proposed method and algorithm are verified by small-scale and large-scale examples. In a large-scale numerical example solution, the influence of various constraints on the mining results is analyzed. Finally, the solution results of SSPM and SSPMTW are compared and analyzed, and it is suggested that SSPMTW can excavate the laws existing in local time windows and analyze the periodicity of the laws, which solves the problem of SSPM ignoring the laws existing in local time windows and overcomes the limitations of traditional sequential pattern mining algorithms. In addition, the rules mined by SSPMTW reduce the entropy of the system.

摘要

传统的序列模式挖掘方法是在考虑整个时间段的情况下进行的,常常忽略仅在局部时间窗口中出现的序列模式以及可能的周期性。因此,为了克服传统方法的局限性,本文提出了带时间窗口的状态集序列模式挖掘(SSPMTW)。与传统方法相比,该方法考虑了项目状态,并添加了时间窗口、最小置信度、最小覆盖度、最小因子集比率等约束条件,以在局部时间窗口中挖掘更有价值的规则。同时还分析了这些规则的周期性。根据所提出的方法,本文改进了Apriori算法,提出了TW-Apriori算法,并阐述了该算法的基本思想。然后,通过小规模和大规模实例验证了所提方法和算法的可行性、有效性和效率。在大规模数值实例求解中,分析了各种约束条件对挖掘结果的影响。最后,对SSPM和SSPMTW的求解结果进行了比较分析,结果表明SSPMTW能够挖掘局部时间窗口中存在的规律并分析规律的周期性,解决了SSPM忽略局部时间窗口中存在规律的问题,克服了传统序列模式挖掘算法的局限性。此外,SSPMTW挖掘出的规则降低了系统的熵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af45/8230706/83166ed19799/entropy-23-00738-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验