Suppr超能文献

粉末床熔融过程中的新晶粒形成机制

New Grain Formation Mechanisms during Powder Bed Fusion.

作者信息

Rausch Alexander M, Pistor Julian, Breuning Christoph, Markl Matthias, Körner Carolin

机构信息

Chair of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 5, 91058 Erlangen, Germany.

Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762 Fürth, Germany.

出版信息

Materials (Basel). 2021 Jun 16;14(12):3324. doi: 10.3390/ma14123324.

Abstract

Tailoring the mechanical properties of parts by influencing the solidification conditions is a key topic of powder bed fusion. Depending on the application, single crystalline, columnar, or equiaxed microstructures are desirable. To produce single crystals or equiaxed microstructures, the control of nucleation is of outstanding importance. Either it should be avoided or provoked. There are also applications, such as turbine blades, where both microstructures at different locations are required. Here, we investigate nucleation at the melt-pool border during the remelting of CMSX-4 samples built using powder bed fusion. We studied the difference between remelting as-built and homogenized microstructures. We identified two new mechanisms that led to grain formation at the beginning of solidification. Both mechanisms involved a change in the solidification microstructure from the former remelted and newly forming material. For the as-built samples, a discrepancy between the former and new dendrite arm spacing led to increased interdentritic undercooling at the beginning of solidification. For the heat-treated samples, the collapse of a planar front led to new grains. To identify these mechanisms, we conducted experimental and numerical investigations. The identification of such mechanisms during powder bed fusion is a fundamental prerequisite to controlling the solidification conditions to produce single crystalline and equiaxed microstructures.

摘要

通过影响凝固条件来定制零件的机械性能是粉末床熔融的一个关键课题。根据应用需求,单晶、柱状或等轴微观结构是理想的。为了生产单晶或等轴微观结构,形核控制至关重要。要么应避免形核,要么应引发形核。还有一些应用,如涡轮叶片,在不同位置需要两种微观结构。在此,我们研究了使用粉末床熔融制造的CMSX - 4样品重熔过程中熔池边界处的形核情况。我们研究了重熔原始态和均匀化微观结构之间的差异。我们确定了两种在凝固开始时导致晶粒形成的新机制。这两种机制都涉及到从先前重熔和新形成材料的凝固微观结构的变化。对于原始态样品,先前和新的枝晶臂间距之间的差异导致凝固开始时枝晶间过冷度增加。对于热处理样品,平面前沿的崩塌导致新晶粒形成。为了识别这些机制,我们进行了实验和数值研究。在粉末床熔融过程中识别此类机制是控制凝固条件以生产单晶和等轴微观结构的基本前提。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c575/8234934/11e0797ea84e/materials-14-03324-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验