Suppr超能文献

基于电子束的增材制造中表面形貌演变的基本机制

Basic Mechanism of Surface Topography Evolution in Electron Beam Based Additive Manufacturing.

作者信息

Breuning Christoph, Pistor Julian, Markl Matthias, Körner Carolin

机构信息

Chair of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 5, 91058 Erlangen, Germany.

Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr. Mack Str. 81, 90762 Fürth, Germany.

出版信息

Materials (Basel). 2022 Jul 7;15(14):4754. doi: 10.3390/ma15144754.

Abstract

This study introduces and verifies a basic mechanism of surface topography evolution in electron beam additive manufacturing (E-PBF). A semi-analytical heat conduction model is used to examine the spatio-temporal evolution of the meltpool and segment the build surface according to the emerging persistent meltpool domains. Each persistent domain is directly compared with the corresponding melt surface, and exhibits a characteristic surface morphology and topography. The proposed underlying mechanism of topography evolution is based on different forms of material transport in each distinct persistent domain, driven by evaporation and thermocapillary convection along the temperature gradient of the emerging meltpool. This effect is shown to be responsible for the upper bound of the standard process window in E-PBF, where surface bulges form. Based on this mechanism, process strategies to prevent the formation of surface bulges for complex geometries are proposed.

摘要

本研究介绍并验证了电子束增材制造(E-PBF)中表面形貌演变的基本机制。采用半解析热传导模型来研究熔池的时空演变,并根据出现的持续熔池区域对构建表面进行划分。将每个持续区域直接与相应的熔池表面进行比较,其呈现出独特的表面形态和形貌。所提出的形貌演变潜在机制基于每个不同持续区域中不同形式的材料传输,这是由沿新出现熔池温度梯度的蒸发和热毛细对流驱动的。结果表明,这种效应是E-PBF中标准工艺窗口上限的原因,在此上限处会形成表面凸起。基于这一机制,提出了防止复杂几何形状表面凸起形成的工艺策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3156/9319307/d545d1809da3/materials-15-04754-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验