Gu Ping, Cai Xiaofeng, Wu Guohua, Xue Chenpeng, Chen Jing, Zhang Zuxing, Yan Zhendong, Liu Fanxin, Tang Chaojun, Du Wei, Huang Zhong, Chen Zhuo
Institute of Advanced Photonics Technology, College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
College of Science, Nanjing Forestry University, Nanjing 210037, China.
Nanomaterials (Basel). 2021 Aug 10;11(8):2039. doi: 10.3390/nano11082039.
We study theoretically the Fano resonances (FRs) produced by the near-field coupling between the lowest-order (dipolar) sphere plasmon resonance and the dipolar cavity plasmon mode supported by an Ag nanoshell or the hybrid mode in a simple three-layered Ag nanomatryushka constructed by incorporating a solid Ag nanosphere into the center of Ag nanoshell. We find that the linewidth of dipolar cavity plasmon resonance or hybrid mode induced FR is as narrow as 6.8 nm (corresponding to a high -factor of ~160 and a long dephasing time of ~200 fs) due to the highly localized feature of the electric-fields. In addition, we attribute the formation mechanisms of typical asymmetrical Fano line profiles in the extinction spectra to the constructive (Fano peak) and the destructive interferences (Fano dip) arising from the symmetric and asymmetric charge distributions between the dipolar sphere and cavity plasmon or hybrid modes. Interestingly, by simply adjusting the structural parameters, the dielectric refractive index required for the strongest FR in the Ag nanomatryushka can be reduced to be as small as 1.4, which largely reduces the restriction on materials, and the positions of FR can also be easily tuned across a broad spectral range. The ultranarrow linewidth, highly tunability together with the huge enhancement of electric fields at the FR may find important applications in sensing, slow light, and plasmon rulers.
我们从理论上研究了由最低阶(偶极)球等离子体共振与银纳米壳支持的偶极腔等离子体模式或通过将实心银纳米球纳入银纳米套娃中心构建的简单三层银纳米套娃中的混合模式之间的近场耦合产生的法诺共振(FRs)。我们发现,由于电场的高度局域化特性,偶极腔等离子体共振或混合模式诱导的FR的线宽窄至6.8纳米(对应于~160的高品质因数和约200飞秒的长退相时间)。此外,我们将消光光谱中典型不对称法诺线形轮廓的形成机制归因于偶极球与腔等离子体或混合模式之间对称和不对称电荷分布产生的相长干涉(法诺峰)和相消干涉(法诺凹陷)。有趣的是,通过简单调整结构参数,银纳米套娃中最强FR所需的介电折射率可降低至低至1.4,这大大降低了对材料的限制,并且FR的位置也可在很宽的光谱范围内轻松调谐。超窄线宽、高度可调谐性以及FR处电场的巨大增强可能在传感、慢光和等离子体标尺方面找到重要应用。