Suppr超能文献

基于单目视觉标记系统的挖掘机机械臂位姿估计。

Pose Estimation of Excavator Manipulator Based on Monocular Vision Marker System.

机构信息

National Engineering Laboratory for Highway Maintenance Equipment, Chang'an University, Xi'an 710064, China.

出版信息

Sensors (Basel). 2021 Jun 30;21(13):4478. doi: 10.3390/s21134478.

Abstract

Excavation is one of the broadest activities in the construction industry, often affected by safety and productivity. To address these problems, it is necessary for construction sites to automatically monitor the poses of excavator manipulators in real time. Based on computer vision (CV) technology, an approach, through a monocular camera and marker, was proposed to estimate the pose parameters (including orientation and position) of the excavator manipulator. To simulate the pose estimation process, a measurement system was established with a common camera and marker. Through comprehensive experiments and error analysis, this approach showed that the maximum detectable depth of the system is greater than 11 m, the orientation error is less than 8.5°, and the position error is less than 22 mm. A prototype of the system that proved the feasibility of the proposed method was tested. Furthermore, this study provides an alternative CV technology for monitoring construction machines.

摘要

挖掘是建筑行业中最广泛的活动之一,通常受到安全和生产力的影响。为了解决这些问题,施工现场有必要实时自动监测挖掘机操纵器的姿势。基于计算机视觉 (CV) 技术,通过单目相机和标记提出了一种方法来估计挖掘机操纵器的姿态参数(包括方向和位置)。为了模拟姿态估计过程,使用普通相机和标记建立了一个测量系统。通过全面的实验和误差分析,该方法表明系统的最大可检测深度大于 11 米,方向误差小于 8.5°,位置误差小于 22 毫米。测试了一个证明所提出方法可行性的系统原型。此外,本研究为监测施工机械提供了一种替代的 CV 技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/8272127/a975765d2984/sensors-21-04478-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验