Guan Jian, Yuan Fu-Zhen, Mao Zi-Mu, Zhu Hai-Lin, Lin Lin, Chen Harry Huimin, Yu Jia-Kuo
Beijing Key Laboratory of Sports Injuries, Sports Medicine Department, Peking University Third Hospital, Beijing 100191, China.
Institute of Sports Medicine of Peking University, Beijing 100191, China.
Polymers (Basel). 2021 Jun 29;13(13):2146. doi: 10.3390/polym13132146.
The limited self-healing ability of cartilage necessitates the application of alternative tissue engineering strategies for repairing the damaged tissue and restoring its normal function. Compared to conventional tissue engineering strategies, three-dimensional (3D) printing offers a greater potential for developing tissue-engineered scaffolds. Herein, we prepared a novel photocrosslinked printable cartilage ink comprising of polyethylene glycol diacrylate (PEGDA), gelatin methacryloyl (GelMA), and chondroitin sulfate methacrylate (CSMA). The PEGDA-GelMA-CSMA scaffolds possessed favorable compressive elastic modulus and degradation rate. In vitro experiments showed good adhesion, proliferation, and F-actin and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. When the CSMA concentration was increased, the compressive elastic modulus, GAG production, and expression of F-actin and cartilage-specific genes (COL2, ACAN, SOX9, PRG4) were significantly improved while the osteogenic marker genes of COL1 and ALP were decreased. The findings of the study indicate that the 3D-printed PEGDA-GelMA-CSMA scaffolds possessed not only adequate mechanical strength but also maintained a suitable 3D microenvironment for differentiation, proliferation, and extracellular matrix production of BMSCs, which suggested this customizable 3D-printed PEGDA-GelMA-CSMA scaffold may have great potential for cartilage repair and regeneration in vivo.
软骨有限的自我修复能力使得应用替代组织工程策略来修复受损组织并恢复其正常功能成为必要。与传统组织工程策略相比,三维(3D)打印在开发组织工程支架方面具有更大的潜力。在此,我们制备了一种新型的光交联可打印软骨墨水,其由聚乙二醇二丙烯酸酯(PEGDA)、甲基丙烯酰化明胶(GelMA)和甲基丙烯酰化硫酸软骨素(CSMA)组成。PEGDA-GelMA-CSMA支架具有良好的压缩弹性模量和降解速率。体外实验表明,骨髓间充质干细胞(BMSCs)在支架上具有良好的黏附、增殖以及F-肌动蛋白表达和软骨分化能力。当CSMA浓度增加时,压缩弹性模量、糖胺聚糖(GAG)产量以及F-肌动蛋白和软骨特异性基因(COL2、ACAN、SOX9、PRG4)的表达显著提高,而COL1和碱性磷酸酶(ALP)的成骨标记基因则下降。该研究结果表明,3D打印的PEGDA-GelMA-CSMA支架不仅具有足够的机械强度,而且为BMSCs的分化、增殖和细胞外基质产生维持了合适的三维微环境,这表明这种可定制的3D打印PEGDA-GelMA-CSMA支架在体内软骨修复和再生方面可能具有巨大潜力。