Department of Electronics Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea.
Department of Electrical and Computer Engineering, Abbottabad Campus, COMSATS University Islamabad, University Road, Tobe Camp, Abbottabad 22044, Pakistan.
Sensors (Basel). 2021 Jun 29;21(13):4462. doi: 10.3390/s21134462.
To realize a large-scale Spiking Neural Network (SNN) on hardware for mobile applications, area and power optimized electronic circuit design is critical. In this work, an area and power optimized hardware implementation of a large-scale SNN for real time IoT applications is presented. The analog Complementary Metal Oxide Semiconductor (CMOS) implementation incorporates neuron and synaptic circuits optimized for area and power consumption. The asynchronous neuronal circuits implemented benefit from higher energy efficiency and higher sensitivity. The proposed synapse circuit based on Binary Exponential Charge Injector (BECI) saves area and power consumption, and provides design scalability for higher resolutions. The SNN model implemented is optimized for 9 × 9 pixel input image and minimum bit-width weights that can satisfy target accuracy, occupies less area and power consumption. Moreover, the spiking neural network is replicated in full digital implementation for area and power comparisons. The SNN chip integrated from neuron and synapse circuits is capable of pattern recognition. The proposed SNN chip is fabricated using 180 nm CMOS process, which occupies a 3.6 mm chip core area, and achieves a classification accuracy of 94.66% for the MNIST dataset. The proposed SNN chip consumes an average power of 1.06 mW-20 times lower than the digital implementation.
为了在硬件上实现用于移动应用的大规模尖峰神经网络 (SNN),需要对面积和功率进行优化的电子电路设计。在这项工作中,提出了一种用于实时物联网应用的大规模 SNN 的面积和功率优化硬件实现。模拟互补金属氧化物半导体 (CMOS) 实现包含针对面积和功耗进行了优化的神经元和突触电路。所实现的异步神经元电路具有更高的能量效率和更高的灵敏度。基于二进制指数电荷注入器 (BECI) 的提出的突触电路可节省面积和功耗,并为更高的分辨率提供设计可扩展性。所实现的 SNN 模型针对 9×9 像素输入图像和可满足目标精度的最小位宽权重进行了优化,占用的面积和功耗更小。此外,还对全数字实现的尖峰神经网络进行了复制,以进行面积和功率比较。该神经元和突触电路集成的 SNN 芯片能够进行模式识别。所提出的 SNN 芯片使用 180nm CMOS 工艺制造,占用 3.6mm 芯片核心面积,对 MNIST 数据集的分类准确率达到 94.66%。与数字实现相比,所提出的 SNN 芯片的平均功耗降低了 1.06mW-20 倍。