Suppr超能文献

MorphIC:具有随机尖峰驱动在线学习功能的 65nm 738k 突触/mm 四核二进制权数字神经形态处理器。

MorphIC: A 65-nm 738k-Synapse/mm Quad-Core Binary-Weight Digital Neuromorphic Processor With Stochastic Spike-Driven Online Learning.

出版信息

IEEE Trans Biomed Circuits Syst. 2019 Oct;13(5):999-1010. doi: 10.1109/TBCAS.2019.2928793. Epub 2019 Jul 15.

Abstract

Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient SNNs still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this paper, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86 mm in 65-nm CMOS, achieving a high density of 738k synapses/mm . MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.

摘要

近年来,神经网络加速器领域的研究趋势将权重量化作为提高硬件设备资源效率和功率效率的一种手段。由于全片上权重存储对于避免片外存储器访问的高能耗是必要的,因此对于权重存储的减少需求促使使用二进制权重,当使用量化感知训练技术时,这在许多应用中被证明会有限制地降低精度。与此同时,尖峰神经网络(SNN)架构被探索用于进一步降低处理稀疏基于事件数据流时的功耗,而片上基于尖峰的在线学习似乎是在训练阶段受限于功率和资源的应用的关键特征。然而,为了在不影响突触密度的情况下利用片上在线学习二进制权重,设计高能效和高面积效率的 SNN 仍然需要开发特定的技术。在本文中,我们展示了 MorphIC,这是一款四核二进制权重数字神经形态处理器,嵌入了基于尖峰的突触可塑性(S-SDSP)学习规则的随机版本和用于大规模芯片互连的分层路由结构。MorphIC SNN 处理器总共嵌入了 2k 个漏电积分和放电(LIF)神经元和超过两百万个可塑突触,在 65nm CMOS 中采用 2.86mm 的有源硅面积,实现了 738k 个突触/mm 的高密度。与以前提出的 SNN 相比,MorphIC 在 MNIST 分类任务中的面积精度权衡方面取得了数量级的改进,而在能量精度权衡方面没有任何代价。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验