Suppr超能文献

人类组织病理学标本中肺纤维化的自动化数字定量分析

Automated Digital Quantification of Pulmonary Fibrosis in Human Histopathology Specimens.

作者信息

Testa Lauren C, Jule Yvon, Lundh Linnea, Bertotti Karine, Merideth Melissa A, O'Brien Kevin J, Nathan Steven D, Venuto Drew C, El-Chemaly Souheil, Malicdan May Christine V, Gochuico Bernadette R

机构信息

Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.

Biocellvia, Marseille, France.

出版信息

Front Med (Lausanne). 2021 Jun 15;8:607720. doi: 10.3389/fmed.2021.607720. eCollection 2021.

Abstract

Pulmonary fibrosis is characterized by abnormal interstitial extracellular matrix and cellular accumulations. Methods quantifying fibrosis severity in lung histopathology samples are semi-quantitative, subjective, and analyze only portions of sections. We sought to determine whether automated computerized imaging analysis shown to continuously measure fibrosis in mice could also be applied in human samples. A pilot study was conducted to analyze a small number of specimens from patients with Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF) or idiopathic pulmonary fibrosis (IPF). Digital images of entire lung histological serial sections stained with picrosirius red and alcian blue or anti-CD68 antibody were analyzed using dedicated software to automatically quantify fibrosis, collagen, and macrophage content. Automated fibrosis quantification based on parenchymal tissue density and fibrosis score measurements was compared to pulmonary function values or Ashcroft score. Automated fibrosis quantification of HPSPF lung explants was significantly higher than that of IPF lung explants or biopsies and was also significantly higher in IPF lung explants than in IPF biopsies. A high correlation coefficient was found between some automated quantification measurements and lung function values for the three sample groups. Automated quantification of collagen content in lung sections used for digital image analyses was similar in the three groups. CD68 immunolabeled cell measurements were significantly higher in HPSPF explants than in IPF biopsies. In conclusion, computerized image analysis provides access to accurate, reader-independent pulmonary fibrosis quantification in human histopathology samples. Fibrosis, collagen content, and immunostained cells can be automatically and individually quantified from serial sections. Robust automated digital image analysis of human lung samples enhances the available tools to quantify and study fibrotic lung disease.

摘要

肺纤维化的特征是间质细胞外基质异常和细胞积聚。在肺组织病理学样本中量化纤维化严重程度的方法是半定量的、主观的,并且仅分析切片的部分区域。我们试图确定已证明可连续测量小鼠纤维化的自动化计算机成像分析是否也可应用于人类样本。开展了一项初步研究,以分析来自患有Hermansky-Pudlak综合征肺纤维化(HPSPF)或特发性肺纤维化(IPF)患者的少量标本。使用专用软件分析用天狼星红苦味酸和阿尔辛蓝或抗CD68抗体染色的整个肺组织学连续切片的数字图像,以自动量化纤维化、胶原蛋白和巨噬细胞含量。将基于实质组织密度和纤维化评分测量的自动化纤维化量化结果与肺功能值或阿什克罗夫特评分进行比较。HPSPF肺外植体的自动化纤维化量化结果显著高于IPF肺外植体或活检标本,IPF肺外植体的结果也显著高于IPF活检标本。在三个样本组中,一些自动化量化测量结果与肺功能值之间发现了较高的相关系数。用于数字图像分析的肺切片中胶原蛋白含量的自动化量化在三组中相似。HPSPF外植体中CD68免疫标记细胞的测量结果显著高于IPF活检标本。总之,计算机图像分析可在人类组织病理学样本中实现准确的、与阅片者无关的肺纤维化量化。可以从连续切片中自动且分别地量化纤维化、胶原蛋白含量和免疫染色细胞。对人类肺样本进行强大的自动化数字图像分析可增强用于量化和研究纤维化肺病的现有工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f2/8240807/1e39db1f2ab2/fmed-08-607720-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验