Suppr超能文献

数字图像分析 picrosirius 红染色:多器官纤维化定量和特征分析的稳健方法。

Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization.

机构信息

IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium.

Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium.

出版信息

Biomolecules. 2020 Nov 22;10(11):1585. doi: 10.3390/biom10111585.

Abstract

Current understanding of fibrosis remains incomplete despite the increasing burden of related diseases. Preclinical models are used to dissect the pathogenesis and dynamics of fibrosis, and to evaluate anti-fibrotic therapies. These studies require objective and accurate measurements of fibrosis. Existing histological quantification methods are operator-dependent, organ-specific, and/or need advanced equipment. Therefore, we developed a robust, minimally operator-dependent, and tissue-transposable digital method for fibrosis quantification. The proposed method involves a novel algorithm for more specific and more sensitive detection of collagen fibers stained by picrosirius red (PSR), a computer-assisted segmentation of histological structures, and a new automated morphological classification of fibers according to their compactness. The new algorithm proved more accurate than classical filtering using principal color component (red-green-blue; RGB) for PSR detection. We applied this new method on established mouse models of liver, lung, and kidney fibrosis and demonstrated its validity by evidencing topological collagen accumulation in relevant histological compartments. Our data also showed an overall accumulation of compact fibers concomitant with worsening fibrosis and evidenced topological changes in fiber compactness proper to each model. In conclusion, we describe here a robust digital method for fibrosis analysis allowing accurate quantification, pattern recognition, and multi-organ comparisons useful to understand fibrosis dynamics.

摘要

尽管相关疾病的负担不断增加,但人们对纤维化的认识仍然不完整。临床前模型用于剖析纤维化的发病机制和动态,并评估抗纤维化疗法。这些研究需要对纤维化进行客观和准确的测量。现有的组织学定量方法依赖于操作者、器官特异性,并且/或者需要先进的设备。因此,我们开发了一种稳健、最小依赖操作者、可转移至组织的纤维化定量数字方法。所提出的方法涉及一种新算法,用于更具体和更敏感地检测经派洛昔康红(PSR)染色的胶原纤维,一种辅助组织学结构分割的计算机程序,以及一种根据纤维的紧密程度对纤维进行新的自动形态分类的方法。新算法在 PSR 检测方面比经典的基于主要颜色成分(红-绿-蓝;RGB)的滤波更准确。我们将这种新方法应用于已建立的肝、肺和肾纤维化小鼠模型,并通过证明相关组织学隔室中存在拓扑胶原积累来证明其有效性。我们的数据还表明,随着纤维化的恶化,致密纤维的总体积累伴随着纤维致密性的拓扑变化,这与每种模型的特点一致。总之,我们在这里描述了一种稳健的纤维化分析数字方法,该方法允许进行准确的定量、模式识别和多器官比较,有助于了解纤维化的动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/100b/7709042/6d8abefc4dc0/biomolecules-10-01585-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验