Suppr超能文献

多维分子测量-疾病结局的环境交互分析。

Multidimensional molecular measurements-environment interaction analysis for disease outcomes.

机构信息

Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China.

出版信息

Biometrics. 2022 Dec;78(4):1542-1554. doi: 10.1111/biom.13526. Epub 2021 Aug 1.

Abstract

Multiple types of molecular (genetic, genomic, epigenetic, etc.) measurements, environmental risk factors, and their interactions have been found to contribute to the outcomes and phenotypes of complex diseases. In each of the previous studies, only the interactions between one type of molecular measurement and environmental risk factors have been analyzed. In recent biomedical studies, multidimensional profiling, in which data from multiple types of molecular measurements are collected from the same subjects, is becoming popular. A myriad of recent studies have shown that collectively analyzing multiple types of molecular measurements is not only biologically sensible but also leads to improved estimation and prediction. In this study, we conduct an M-E interaction analysis, with M standing for multidimensional molecular measurements and E standing for environmental risk factors. This can accommodate multiple types of molecular measurements and sufficiently account for their overlapping as well as independent information. Extensive simulation shows that it outperforms several closely related alternatives. In the analysis of TCGA (The Cancer Genome Atlas) data on lung adenocarcinoma and cutaneous melanoma, we make some stable biological findings and achieve stable prediction.

摘要

多种类型的分子(遗传、基因组、表观遗传等)测量、环境风险因素及其相互作用已被发现对复杂疾病的结果和表型有影响。在前每一项研究中,只分析了一种类型的分子测量和环境风险因素之间的相互作用。在最近的生物医学研究中,多维分析越来越流行,即从同一受试者中收集多种类型的分子测量数据。最近的大量研究表明,综合分析多种类型的分子测量不仅在生物学上是合理的,而且还可以提高估计和预测的准确性。在这项研究中,我们进行了 M-E 相互作用分析,其中 M 代表多维分子测量,E 代表环境风险因素。这可以容纳多种类型的分子测量,并充分考虑它们的重叠和独立信息。广泛的模拟表明,它优于几个密切相关的替代方案。在对肺腺癌和皮肤黑色素瘤的 TCGA(癌症基因组图谱)数据的分析中,我们得出了一些稳定的生物学发现,并实现了稳定的预测。

相似文献

1
Multidimensional molecular measurements-environment interaction analysis for disease outcomes.
Biometrics. 2022 Dec;78(4):1542-1554. doi: 10.1111/biom.13526. Epub 2021 Aug 1.
2
Accommodating missingness in environmental measurements in gene-environment interaction analysis.
Genet Epidemiol. 2017 Sep;41(6):523-554. doi: 10.1002/gepi.22055. Epub 2017 Jun 28.
3
Robust semiparametric gene-environment interaction analysis using sparse boosting.
Stat Med. 2019 Oct 15;38(23):4625-4641. doi: 10.1002/sim.8322. Epub 2019 Jul 29.
4
Integrated analysis of multidimensional omics data on cutaneous melanoma prognosis.
Genomics. 2016 Jun;107(6):223-30. doi: 10.1016/j.ygeno.2016.04.005. Epub 2016 Apr 30.
5
Robust identification of gene-environment interactions for prognosis using a quantile partial correlation approach.
Genomics. 2019 Sep;111(5):1115-1123. doi: 10.1016/j.ygeno.2018.07.006. Epub 2018 Jul 17.
7
Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA.
Brief Bioinform. 2015 Mar;16(2):291-303. doi: 10.1093/bib/bbu003. Epub 2014 Mar 13.
8
Identifying gene-environment interactions incorporating prior information.
Stat Med. 2019 Apr 30;38(9):1620-1633. doi: 10.1002/sim.8064. Epub 2019 Jan 13.
9
Identification of gene-environment interactions with marginal penalization.
Genet Epidemiol. 2020 Mar;44(2):159-196. doi: 10.1002/gepi.22270. Epub 2019 Nov 14.
10
Analysis of cancer gene expression data with an assisted robust marker identification approach.
Genet Epidemiol. 2017 Dec;41(8):779-789. doi: 10.1002/gepi.22066. Epub 2017 Sep 14.

引用本文的文献

1
High-Dimensional Gene-Environment Interaction Analysis.
Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.
2
Hierarchical False Discovery Rate Control for High-dimensional Survival Analysis with Interactions.
Comput Stat Data Anal. 2024 Apr;192. doi: 10.1016/j.csda.2023.107906. Epub 2023 Dec 5.
4
Pathological imaging-assisted cancer gene-environment interaction analysis.
Biometrics. 2023 Dec;79(4):3883-3894. doi: 10.1111/biom.13873. Epub 2023 May 17.

本文引用的文献

1
Biclustering via sparse clustering.
Biometrics. 2020 Mar;76(1):348-358. doi: 10.1111/biom.13136. Epub 2019 Oct 14.
2
Structured gene-environment interaction analysis.
Biometrics. 2020 Mar;76(1):23-35. doi: 10.1111/biom.13139. Epub 2019 Oct 9.
3
A Selective Review of Multi-Level Omics Data Integration Using Variable Selection.
High Throughput. 2019 Jan 18;8(1):4. doi: 10.3390/ht8010004.
4
5
Incorporation of Biological Knowledge Into the Study of Gene-Environment Interactions.
Am J Epidemiol. 2017 Oct 1;186(7):771-777. doi: 10.1093/aje/kwx229.
6
Integrated analysis of multidimensional omics data on cutaneous melanoma prognosis.
Genomics. 2016 Jun;107(6):223-30. doi: 10.1016/j.ygeno.2016.04.005. Epub 2016 Apr 30.
7
Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know?
Genet Epidemiol. 2016 Jul;40(5):356-65. doi: 10.1002/gepi.21967. Epub 2016 Apr 7.
8
Integrating multidimensional omics data for cancer outcome.
Biostatistics. 2016 Oct;17(4):605-18. doi: 10.1093/biostatistics/kxw010. Epub 2016 Mar 14.
9
Deciphering the associations between gene expression and copy number alteration using a sparse double Laplacian shrinkage approach.
Bioinformatics. 2015 Dec 15;31(24):3977-83. doi: 10.1093/bioinformatics/btv518. Epub 2015 Sep 3.
10
A LASSO FOR HIERARCHICAL INTERACTIONS.
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验