Yu Li-Wei, Deng Dong-Ling
Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China.
Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China.
Phys Rev Lett. 2021 Jun 18;126(24):240402. doi: 10.1103/PhysRevLett.126.240402.
Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect and the breakdown of conventional bulk-boundary correspondence. In this Letter, we introduce an unsupervised machine learning approach to classify non-Hermitian topological phases based on diffusion maps, which are widely used in manifold learning. We find that the non-Hermitian skin effect will pose a notable obstacle, rendering the straightforward extension of unsupervised learning approaches to topological phases for Hermitian systems ineffective in clustering non-Hermitian topological phases. Through theoretical analysis and numerical simulations of two prototypical models, we show that this difficulty can be circumvented by choosing the "on-site" elements of the projective matrix as the input data. Our results provide a valuable guidance for future studies on learning non-Hermitian topological phases in an unsupervised fashion, both in theory and experiment.
非厄米拓扑相具有许多奇异特性,例如非厄米趋肤效应以及传统体-边界对应关系的失效。在本信函中,我们引入一种无监督机器学习方法,基于广泛应用于流形学习的扩散映射来对非厄米拓扑相进行分类。我们发现,非厄米趋肤效应将构成一个显著障碍,使得将用于厄米系统拓扑相的无监督学习方法直接扩展到非厄米拓扑相的聚类时无效。通过对两个典型模型的理论分析和数值模拟,我们表明通过选择投影矩阵的“在位”元素作为输入数据可以规避这一困难。我们的结果为未来在理论和实验上以无监督方式学习非厄米拓扑相的研究提供了有价值的指导。