Wen Yang, Chen Jie, Sheng Bin, Chen Zhihua, Li Ping, Tan Ping, Lee Tong-Yee
IEEE Trans Image Process. 2021;30:6142-6155. doi: 10.1109/TIP.2021.3092814. Epub 2021 Jul 9.
Recently, Convolutional Neural Networks (CNNs) have achieved great improvements in blind image motion deblurring. However, most existing image deblurring methods require a large amount of paired training data and fail to maintain satisfactory structural information, which greatly limits their application scope. In this paper, we present an unsupervised image deblurring method based on a multi-adversarial optimized cycle-consistent generative adversarial network (CycleGAN). Although original CycleGAN can handle unpaired training data well, the generated high-resolution images are probable to lose content and structure information. To solve this problem, we utilize a multi-adversarial mechanism based on CycleGAN for blind motion deblurring to generate high-resolution images iteratively. In this multi-adversarial manner, the hidden layers of the generator are gradually supervised, and the implicit refinement is carried out to generate high-resolution images continuously. Meanwhile, we also introduce the structure-aware mechanism to enhance the structure and detail retention ability of the multi-adversarial network for deblurring by taking the edge map as guidance information and adding multi-scale edge constraint functions. Our approach not only avoids the strict need for paired training data and the errors caused by blur kernel estimation, but also maintains the structural information better with multi-adversarial learning and structure-aware mechanism. Comprehensive experiments on several benchmarks have shown that our approach prevails the state-of-the-art methods for blind image motion deblurring.
最近,卷积神经网络(CNN)在盲图像运动去模糊方面取得了很大进展。然而,大多数现有的图像去模糊方法需要大量的成对训练数据,并且无法保持令人满意的结构信息,这极大地限制了它们的应用范围。在本文中,我们提出了一种基于多对抗优化循环一致生成对抗网络(CycleGAN)的无监督图像去模糊方法。虽然原始的CycleGAN能够很好地处理不成对的训练数据,但生成的高分辨率图像可能会丢失内容和结构信息。为了解决这个问题,我们利用基于CycleGAN的多对抗机制进行盲运动去模糊,以迭代地生成高分辨率图像。通过这种多对抗方式,生成器的隐藏层逐渐受到监督,并进行隐式细化以持续生成高分辨率图像。同时,我们还引入了结构感知机制,通过将边缘图作为指导信息并添加多尺度边缘约束函数,来增强多对抗网络在去模糊时保留结构和细节的能力。我们的方法不仅避免了对成对训练数据的严格需求以及模糊核估计所导致的误差,还通过多对抗学习和结构感知机制更好地保持了结构信息。在多个基准上的综合实验表明,我们的方法在盲图像运动去模糊方面优于当前的先进方法。