Suppr超能文献

基于流形到流形距离的动态点云去噪

Dynamic Point Cloud Denoising via Manifold-to-Manifold Distance.

作者信息

Hu Wei, Hu Qianjiang, Wang Zehua, Gao Xiang

出版信息

IEEE Trans Image Process. 2021;30:6168-6183. doi: 10.1109/TIP.2021.3092826. Epub 2021 Jul 9.

Abstract

3D dynamic point clouds provide a natural discrete representation of real-world objects or scenes in motion, with a wide range of applications in immersive telepresence, autonomous driving, surveillance, etc. Nevertheless, dynamic point clouds are often perturbed by noise due to hardware, software or other causes. While a plethora of methods have been proposed for static point cloud denoising, few efforts are made for the denoising of dynamic point clouds, which is quite challenging due to the irregular sampling patterns both spatially and temporally. In this paper, we represent dynamic point clouds naturally on spatial-temporal graphs, and exploit the temporal consistency with respect to the underlying surface (manifold). In particular, we define a manifold-to-manifold distance and its discrete counterpart on graphs to measure the variation-based intrinsic distance between surface patches in the temporal domain, provided that graph operators are discrete counterparts of functionals on Riemannian manifolds. Then, we construct the spatial-temporal graph connectivity between corresponding surface patches based on the temporal distance and between points in adjacent patches in the spatial domain. Leveraging the initial graph representation, we formulate dynamic point cloud denoising as the joint optimization of the desired point cloud and underlying graph representation, regularized by both spatial smoothness and temporal consistency. We reformulate the optimization and present an efficient algorithm. Experimental results show that the proposed method significantly outperforms independent denoising of each frame from state-of-the-art static point cloud denoising approaches, on both Gaussian noise and simulated LiDAR noise.

摘要

三维动态点云为运动中的现实世界物体或场景提供了一种自然的离散表示,在沉浸式远程呈现、自动驾驶、监控等领域有广泛应用。然而,由于硬件、软件或其他原因,动态点云常常受到噪声干扰。虽然已经提出了大量用于静态点云去噪的方法,但针对动态点云去噪的工作却很少,由于其在空间和时间上的不规则采样模式,这极具挑战性。在本文中,我们在时空图上自然地表示动态点云,并利用相对于基础表面(流形)的时间一致性。具体而言,我们定义了流形到流形的距离及其在图上的离散对应物,以测量时间域中表面补丁之间基于变化的内在距离,前提是图算子是黎曼流形上泛函的离散对应物。然后,我们基于时间距离以及空间域中相邻补丁内点之间的关系,构建对应表面补丁之间的时空图连通性。利用初始图表示,我们将动态点云去噪表述为期望点云和基础图表示的联合优化,并通过空间平滑性和时间一致性进行正则化。我们对优化进行重新表述并提出了一种高效算法。实验结果表明,在高斯噪声和模拟激光雷达噪声下,所提方法显著优于现有最先进静态点云去噪方法对每一帧进行单独去噪的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验