Suppr超能文献

基于表达的变异影响表型分析预测基因变异的功能。

eVIP2: Expression-based variant impact phenotyping to predict the function of gene variants.

机构信息

Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America.

UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America.

出版信息

PLoS Comput Biol. 2021 Jul 2;17(7):e1009132. doi: 10.1371/journal.pcbi.1009132. eCollection 2021 Jul.

Abstract

While advancements in genome sequencing have identified millions of somatic mutations in cancer, their functional impact is poorly understood. We previously developed the expression-based variant impact phenotyping (eVIP) method to use gene expression data to characterize the function of gene variants. The eVIP method uses a decision tree-based algorithm to predict the functional impact of somatic variants by comparing gene expression signatures induced by introduction of wild-type (WT) versus mutant cDNAs in cell lines. The method distinguishes between variants that are gain-of-function, loss-of-function, change-of-function, or neutral. We present eVIP2, software that allows for pathway analysis (eVIP Pathways) and usage with RNA-seq data. To demonstrate the eVIP2 software and approach, we characterized two recurrent frameshift variants in RNF43, a negative regulator of Wnt signaling, frequently mutated in colorectal, gastric, and endometrial cancer. RNF43 WT, RNF43 R117fs, RNF43 G659fs, or GFP control cDNA were overexpressed in HEK293T cells. Analysis with eVIP2 predicted that the frameshift at position 117 was a loss-of-function mutation, as expected. The second frameshift at position 659 has been previously described as a passenger mutation that maintains the RNF43 WT function as a negative regulator of Wnt. Surprisingly, eVIP2 predicted G659fs to be a change-of-function mutation. Additional eVIP Pathways analysis of RNF43 G659fs predicted 10 pathways to be significantly altered, including TNF-α via NFκB signaling, KRAS signaling, and hypoxia, highlighting the benefit of a more comprehensive approach when determining the impact of gene variant function. To validate these predictions, we performed reporter assays and found that each pathway activated by expression of RNF43 G659fs, but not expression of RNF43 WT, was identified as impacted by eVIP2, supporting that RNF43 G659fs is a change-of-function mutation and its effect on the identified pathways. Pathway activation was further validated by Western blot analysis. Lastly, we show primary colon adenocarcinoma patient samples with R117fs and G659fs variants have transcriptional profiles similar to BRAF missense mutations with activated RAS/MAPK signaling, consistent with KRAS signaling pathways being GOF in both variants. The eVIP2 method is an important step towards overcoming the current challenge of variant interpretation in the implementation of precision medicine. eVIP2 is available at https://github.com/BrooksLabUCSC/eVIP2.

摘要

虽然基因组测序的进步已经在癌症中鉴定出了数百万个体细胞突变,但它们的功能影响仍知之甚少。我们之前开发了基于表达的变异影响表型分析(eVIP)方法,该方法使用基因表达数据来描述基因变异的功能。eVIP 方法使用基于决策树的算法,通过比较在细胞系中引入野生型(WT)和突变 cDNA 时诱导的基因表达特征,来预测体细胞变异的功能影响。该方法可区分功能获得性、功能丧失性、功能改变性和中性变异。我们展示了 eVIP2 软件,该软件允许进行途径分析(eVIP 途径)并与 RNA-seq 数据一起使用。为了展示 eVIP2 软件和方法,我们对 RNF43 中的两个高频突变的移码变异进行了特征描述,RNF43 是 Wnt 信号的负调控因子,在结直肠癌、胃癌和子宫内膜癌中经常发生突变。将 RNF43 WT、RNF43 R117fs、RNF43 G659fs 或 GFP 对照 cDNA 在 HEK293T 细胞中过表达。使用 eVIP2 分析预测,位置 117 的移码是功能丧失性突变,这是预期的。第二个位置 659 的移码之前被描述为乘客突变,它保持 RNF43 WT 作为 Wnt 负调节剂的功能。令人惊讶的是,eVIP2 预测 G659fs 是功能改变性突变。对 RNF43 G659fs 的额外 eVIP 途径分析预测有 10 条途径显著改变,包括 TNF-α 通过 NFκB 信号、KRAS 信号和缺氧,这突出了在确定基因变异功能影响时采用更全面方法的好处。为了验证这些预测,我们进行了报告基因检测,发现表达 RNF43 G659fs 激活的每条途径,但不表达 RNF43 WT,都被 eVIP2 识别为受影响,这支持 RNF43 G659fs 是功能改变性突变,并且对鉴定途径有影响。通过 Western blot 分析进一步验证了途径激活。最后,我们展示了带有 R117fs 和 G659fs 变异的原发性结肠腺癌患者样本的转录谱类似于激活 RAS/MAPK 信号的 BRAF 错义突变,这与 KRAS 信号通路在这两种变异中均为 GOF 一致。eVIP2 方法是克服当前精准医学实施中变异解释挑战的重要一步。eVIP2 可在 https://github.com/BrooksLabUCSC/eVIP2 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0149/8281988/8431728ab03d/pcbi.1009132.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验