School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China.
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
J Colloid Interface Sci. 2021 Dec;603:291-306. doi: 10.1016/j.jcis.2021.06.114. Epub 2021 Jun 23.
Improving the SO resistance of catalysts is crucial to driving commercial applications of Mn-based catalysts. In this work, the phosphotungstic acid (HPW) modification strategy was applied to improve the N selectivity, SO and HO resistance of the Mn-Ce-Co catalyst, and further, the mechanism of HWP modification on enhanced catalytic performance was explored. The results showed that HPW-Mn-Ce-Co catalyst exhibits higher NO conversion (~100% at 100-250 °C) and N selectivity (exceed 80% at 50-350 °C) due to more oxygen vacancies, greater surface acidity, and lower redox capacity. In situ diffused reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) reveal that HPW changed the reaction path of Mn-Ce-Co catalysts, promoted the adsorption and activation of NH, and reduced the effect of SO on the active bidentate nitrate species, and thereby exhibiting good SO resistance. X-ray photoelectron spectrometer (XPS) and NH temperature-programmed desorption of (NH-TPD) results show that HPW can inhibit the formation of metal sulfate, and SO can be combined with Ce species more easily. The generated Ce(SO) can not only protect Mn species but also increase the acid sites and weaken the poisoning effect of metal sulfate. This study provides a simple design strategy for the catalyst to improve the low-temperature catalytic performance and toxicity resistance.
提高催化剂的 SO 抗性对于推动 Mn 基催化剂的商业应用至关重要。在这项工作中,采用磷钨酸 (HPW) 修饰策略来提高 Mn-Ce-Co 催化剂的 N 选择性、SO 和 HO 抗性,并进一步探讨了 HPW 修饰对增强催化性能的作用机制。结果表明,HPW-Mn-Ce-Co 催化剂由于具有更多的氧空位、更大的表面酸度和更低的氧化还原能力,表现出更高的 NO 转化率(在 100-250°C 时接近 100%)和 N 选择性(在 50-350°C 时超过 80%)。原位漫反射红外傅里叶变换光谱(in situ DRIFTS)表明,HPW 改变了 Mn-Ce-Co 催化剂的反应路径,促进了 NH 的吸附和活化,降低了 SO 对活性双齿硝酸盐物种的影响,从而表现出良好的 SO 抗性。X 射线光电子能谱(XPS)和 NH 程序升温脱附(NH-TPD)结果表明,HPW 可以抑制硫酸盐的形成,并且 SO 更容易与 Ce 物种结合。生成的 Ce(SO)不仅可以保护 Mn 物种,还可以增加酸位并减弱硫酸盐的毒害作用。这项研究为催化剂提供了一种简单的设计策略,以提高低温催化性能和抗毒性。