Suppr超能文献

形成独特的中空ZnSnO@ZnInS核壳异质结以促进可见光驱动的光催化水分解制氢。

Formation of unique hollow ZnSnO@ZnInS core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production.

作者信息

Guo Feng, Huang Xiliu, Chen Zhihao, Shi Yuxing, Sun Haoran, Cheng Xiaofang, Shi Weilong, Chen Lizhuang

机构信息

School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.

出版信息

J Colloid Interface Sci. 2021 Nov 15;602:889-897. doi: 10.1016/j.jcis.2021.06.074. Epub 2021 Jun 15.

Abstract

Herein, it is reported that a batch of hollow core-shell heterostructure photocatalysts were carefully fabricated using a reliable and convenient low-temperature solvothermal method, and ultra-thin ZnInS nanosheets are grown in situ on the hollow ZnSnO cubes to achieve efficient photocatalytic hydrogen evolution. This unique layered hollow structure utilizes multiple light scattering/reflection within the cavity to enhance light absorption, the thin shell reduces the path of charge transfer, and the irregular nanosheets-wrapped outer layer not only enhances the adsorption power, but also provides an abundant active sites to promote the efficiency of photocatalytic water splitting to produce hydrogen. Therefore, due to the matching energy band and unique structure, the ZnSnO@ZnInS hollow core-shell heterostructure photocatalyst exhibits superior H production efficiency (16340.18 μmol h g) and outstanding stability. This work emphasizes the importance of carefully designing a suitable material structure in addition to adjusting the chemical composition.

摘要

在此,据报道,采用可靠且简便的低温溶剂热法精心制备了一批中空核壳异质结构光催化剂,超薄的ZnInS纳米片原位生长在中空的ZnSnO立方体上,以实现高效的光催化析氢。这种独特的分层中空结构利用腔内的多次光散射/反射来增强光吸收,薄壳减少了电荷转移路径,不规则的纳米片包裹外层不仅增强了吸附能力,还提供了丰富的活性位点,以提高光催化水分解制氢的效率。因此,由于能带匹配和独特结构,ZnSnO@ZnInS中空核壳异质结构光催化剂表现出优异的产氢效率(16340.18 μmol h g)和出色的稳定性。这项工作强调了除调整化学成分外,精心设计合适材料结构的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验