Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, 55455-0132, USA.
Macromol Rapid Commun. 2021 Aug;42(16):e2100279. doi: 10.1002/marc.202100279. Epub 2021 Jul 3.
Metal batteries have been emerging as next-generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short lifespan have impeded practical applications of metal batteries. Although a great deal of effort has been pursued to highlight the thermodynamic origin of dendrite growth and a variety of experimental methodologies for dendrite suppression, the roles of polymer materials in suppressing the dendrite growth have been underestimated. This review aims to give a state-of-the-art overview of contemporary dendrite-suppressing polymer materials from the electro-chemo-mechanical viewpoint of macromolecular design, including i) homogeneous distribution of metal ion flux, ii) mechanical blocking of metal dendrites, iii) tailoring polymer structures, and iv) modulating the physical configuration of polymer membranes. Judiciously tailoring electro-chemo-mechanical properties of polymer materials provides virtually unlimited opportunities to afford safe and high-performance metal battery systems by resolving problematic dendrite issues. Transforming these rational design strategies into building dendrite-suppressing polymer materials and exploiting them towards polymer electrolytes, separators, and coating materials hold the key to realizing safe, dendrite-free, and long-lasting metal battery systems.
金属电池凭借其超高的理论比容量和金属阳极的低还原电位,已成为下一代电池系统。然而,金属电池的实际应用受到了严重阻碍,因为其伴随着安全隐患和短寿命的金属枝晶不受控制的生长。尽管人们已经付出了大量努力来强调枝晶生长的热力学起源,并提出了各种用于抑制枝晶的实验方法,但聚合物材料在抑制枝晶生长方面的作用却被低估了。本综述旨在从高分子设计的电-化学-机械观点出发,对当代抑制枝晶的聚合物材料进行全面的概述,包括:i)均匀分布金属离子通量;ii)机械阻挡金属枝晶;iii)调整聚合物结构;iv)调节聚合物膜的物理形态。通过合理调整聚合物材料的电-化学-机械性能,为解决有问题的枝晶问题,提供了安全、高性能金属电池系统的无限机会。将这些合理的设计策略转化为抑制枝晶的聚合物材料,并将其应用于聚合物电解质、分离器和涂层材料,是实现安全、无枝晶和长寿命金属电池系统的关键。