Yang Hongyuan, Dai Guoliang, Chen Ziliang, Wu Jie, Huang Hui, Liu Yang, Shao Mingwang, Kang Zhenhui
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China.
Small. 2021 Aug;17(32):e2101727. doi: 10.1002/smll.202101727. Epub 2021 Jul 3.
Transition metal oxides (TMOs) have been under the spotlight as promising precatalysts for electrochemical oxygen evolution reaction (OER) in alkaline media. However, the slow and incomplete self-reconstruction from TMOs to (oxy)hydroxides as well as the formed (oxy)hydroxides with unmodified electronic structure gives rise to the inferior OER performance to the noble metal oxide ones. Herein, a unique dual metal oxides lattice coupling strategy is proposed to fabricate carbon cloth-supported ultrathin nanowires arrays, which are composed of pseudo-periodically welded NiO with CeO nanocrystals (NiO/CeO NW@CC). When served as an OER precatalyst in 1.0 m KOH, the NiO/CeO NW@CC shows an ultralow overpotential of 330 mV at 50 mA cm , along with an impressive cycle durability of more than 3 days even at 50 mA cm , surpassing CC-supported NiO and commercial IrO catalysts. The combined experimental and theoretical investigations unveil that the atomic coupling of CeO can not only appreciably trigger the generation of oxygen vacancies and expedite phase transformation of NiO into active NiOOH, but also in situ create a chemical bond with the formed NiOOH and enable the electron injection, thus effectively inhibiting the aggregation of the accessible NiOOH nanodomains and optimizing their reaction free energy towards oxygen-containing intermediates.
过渡金属氧化物(TMOs)作为碱性介质中电化学析氧反应(OER)有前景的预催化剂一直备受关注。然而,从TMOs到(氧)氢氧化物的缓慢且不完全的自重构,以及形成的具有未改性电子结构的(氧)氢氧化物,导致其OER性能比贵金属氧化物的差。在此,提出了一种独特的双金属氧化物晶格耦合策略来制备碳布负载的超薄纳米线阵列,其由伪周期性焊接的NiO与CeO纳米晶体组成(NiO/CeO NW@CC)。当在1.0 m KOH中用作OER预催化剂时,NiO/CeO NW@CC在50 mA cm 时显示出330 mV的超低过电位,即使在50 mA cm 时也具有超过3天的令人印象深刻的循环耐久性,超过了碳布负载的NiO和商业IrO催化剂。结合实验和理论研究表明,CeO的原子耦合不仅能明显引发氧空位的产生并加速NiO向活性NiOOH的相变,还能与形成的NiOOH原位形成化学键并实现电子注入,从而有效抑制可及的NiOOH纳米域的聚集并优化其对含氧化合物中间体的反应自由能。