Suppr超能文献

调控原子界面处铱单原子的局部配位环境以实现高效析氧反应

Regulating Local Coordination Sphere of Ir Single Atoms at the Atomic Interface for Efficient Oxygen Evolution Reaction.

作者信息

Kumar Ashwani, Gil-Sepulcre Marcos, Fandré Jean Pascal, Rüdiger Olaf, Kim Min Gyu, DeBeer Serena, Tüysüz Harun

机构信息

Max Planck Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.

Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.

出版信息

J Am Chem Soc. 2024 Dec 4;146(48):32953-32964. doi: 10.1021/jacs.4c08847. Epub 2024 Oct 8.

Abstract

Single-atom catalysts dispersed on an oxide support are essential for overcoming the sluggishness of the oxygen evolution reaction (OER). However, the durability of most metal single-atoms is compromised under harsh OER conditions due to their low coordination (weak metal-support interactions) and excessive disruption of metal-O bonds to enable lattice oxygen participation, leading to metal dissolution and hindering their practical applicability. Herein, we systematically regulate the local coordination of Ir at the atomic level to enhance the performance of the OER by precisely modulating their steric localization on the NiO surface. Compared to conventional Ir adsorbed on NiO surface, the atomic Ir atoms partially embedded within the NiO surface (Ir-NiO) exhibit a 2-fold increase in Ir-Ni second-shell interaction revealed by X-ray absorption spectroscopy (XAS), suggesting stronger metal-support interactions. Remarkably, Ir-NiO with tailored coordination sphere exhibits excellent alkaline OER mass activity and long-term durability (degradation rate: ∼1 mV/h), outperforming commercial IrO (∼26 mV/h) and conventional Ir on NiO (∼7 mV/h). Comprehensive X-ray absorption and Raman spectroscopies, along with pH-dependence activity tests, identified high-valence atomic Ir sites embedded on the NiOOH surface during the OER followed the lattice oxygen mechanism, thereby circumventing the traditional linear scaling relationships. Moreover, the enhanced Ir-Ni second-shell interaction in Ir-NiO plays a crucial role in imparting structural rigidity to Ir single-atoms, thereby mitigating Ir-dissolution and ensuring superior OER kinetics alongside sustained durability.

摘要

负载于氧化物载体上的单原子催化剂对于克服析氧反应(OER)的迟缓性至关重要。然而,大多数金属单原子在苛刻的OER条件下耐久性会受到影响,这是由于它们的低配位(弱金属-载体相互作用)以及金属-氧键过度断裂以使晶格氧参与反应,导致金属溶解,从而阻碍了它们的实际应用。在此,我们通过精确调节铱(Ir)在氧化镍(NiO)表面的空间定位,在原子水平上系统地调控Ir的局部配位,以提高OER的性能。与吸附在NiO表面的传统Ir相比,部分嵌入NiO表面的原子Ir(Ir-NiO)通过X射线吸收光谱(XAS)显示出Ir-Ni第二壳层相互作用增加了两倍,这表明金属-载体相互作用更强。值得注意的是,具有定制配位球的Ir-NiO表现出优异的碱性OER质量活性和长期耐久性(降解速率:约1 mV/h),优于商业IrO₂(约26 mV/h)和NiO表面的传统Ir(约7 mV/h)。综合的X射线吸收和拉曼光谱以及pH依赖性活性测试表明,在OER过程中嵌入NiOOH表面的高价原子Ir位点遵循晶格氧机制,从而规避了传统的线性标度关系。此外,Ir-NiO中增强的Ir-Ni第二壳层相互作用在赋予Ir单原子结构刚性方面起着关键作用,从而减轻Ir溶解并确保优异的OER动力学以及持续的耐久性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7767/11622227/55b1e25534cf/ja4c08847_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验