Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada.
Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada; Juravinski Hospital and Cancer Centre, Hamilton, Canada.
Cytotherapy. 2021 Sep;23(9):820-832. doi: 10.1016/j.jcyt.2021.05.007. Epub 2021 Jul 1.
T cells engineered with synthetic receptors have delivered powerful therapeutic results for patients with relapsed/refractory hematologic malignancies. The authors have recently described the T-cell antigen coupler (TAC) receptor, which co-opts the endogenous T-cell receptor (TCR) and activates engineered T cells in an HLA-independent manner. Here the authors describe the evolution of a next-generation TAC receptor with a focus on developing a TAC-engineered T cell for multiple myeloma.
To optimize the TAC scaffold, the authors employed a bona fide antigen-binding domain derived from the B-cell maturation antigen-specific monoclonal antibody C11D5.3, which has been used successfully in the clinic. The authors first tested humanized versions of the UCHT1 domain, which is used by the TAC to co-opt the TCR. The authors further discovered that the signal peptide affected surface expression of the TAC receptor. Higher density of the TAC receptor enhanced target binding in vitro, which translated into higher levels of Lck at the immunological synapse and stronger proliferation when only receptor-ligand interactions were present.
The authors observed that the humanized UCHT1 improved surface expression and in vivo efficacy. Using TAC T cells derived from both healthy donors and multiple myeloma patients, the authors determined that despite the influence of receptor density on early activation events and effector function, receptor density did not impact late effector functions in vitro, nor did the receptor density affect in vivo efficacy.
The modifications to the TAC scaffold described herein represent an important step in the evolution of this technology, which tolerates a range of expression levels without impacting therapeutic efficacy.
合成受体工程化的 T 细胞为复发/难治性血液系统恶性肿瘤患者带来了强大的治疗效果。作者最近描述了 T 细胞抗原偶联器(TAC)受体,该受体以非 HLA 依赖的方式共同利用内源性 T 细胞受体(TCR)并激活工程化 T 细胞。在这里,作者描述了下一代 TAC 受体的进化,重点是开发用于多发性骨髓瘤的 TAC 工程化 T 细胞。
为了优化 TAC 支架,作者采用了源自 B 细胞成熟抗原特异性单克隆抗体 C11D5.3 的真正抗原结合结构域,该结构域已在临床上成功应用。作者首先测试了 UCHT1 结构域的人源化版本,该结构域被 TAC 用于共同利用 TCR。作者进一步发现信号肽会影响 TAC 受体的表面表达。TAC 受体的密度增加会增强体外靶标结合,这会转化为免疫突触处 Lck 的更高水平,并且仅存在受体-配体相互作用时,增殖能力更强。
作者观察到人源化 UCHT1 提高了表面表达和体内疗效。使用来自健康供体和多发性骨髓瘤患者的 TAC T 细胞,作者确定尽管受体密度会影响早期激活事件和效应功能,但受体密度不会影响体外晚期效应功能,也不会影响体内疗效。
本文描述的 TAC 支架的修改代表了该技术进化中的重要一步,它可以耐受一系列表达水平而不影响治疗效果。