Suppr超能文献

数据链接技术在太平洋西北地区商业捕鱼伤亡数据中的应用。

Application of data linkage techniques to Pacific Northwest commercial fishing injury and fatality data.

作者信息

Nahorniak Jasmine, Bovbjerg Viktor, Case Samantha, Kincl Laurel

机构信息

College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR, 97331, USA.

College of Public Health and Human Sciences, Oregon State University, 160 SW 26th St., Corvallis, OR, 97331, USA.

出版信息

Inj Epidemiol. 2021 Jul 5;8(1):26. doi: 10.1186/s40621-021-00323-z.

Abstract

BACKGROUND

Commercial fishing consistently has among the highest workforce injury and fatality rates in the United States. Data related to commercial fishing incidents are routinely collected by multiple organizations which do not currently coordinate or automatically link data. Each data set has the potential to generate a more complete picture to inform prevention efforts. Our objective was to examine the utility of using statistical data linkage methods to link commercial fishing incident data when personally identifiable information is not available.

METHODS

In this feasibility study, we identified true matches and discrepancies between de-identified data sets using the Python Record Linkage Toolkit. Four commercial fishing data sets from Oregon and Washington were linked: the Commercial Fishing Incident Database, the Vessel Casualty Database, the Nonfatal Injuries Database, and the Oregon Trauma Registry. The data sets each covered different date ranges within 2000-2017, containing 458, 524, 184, and 11 cases respectively. Several data linkage classifiers were evaluated.

RESULTS

The Naïve-Bayes classifier returned the highest number of true matches between these small data sets. A total of 41 true matches and 8 close matches were identified, of which 29 were determined to be duplicates. In addition, linkage highlighted 4 records that were not commercial fishing cases from Oregon and Washington. The optimum match parameters were the date, state, vessel official number, and number of people on board.

CONCLUSIONS

Statistical data linkage enables accurate, routine matching for small de-identified injury and fatality data sets such as those in commercial fishing. It provides information needed to improve the accuracy of existing data records. It also enables expanding and sharpening details of individual incidents in support of occupational safety research.

摘要

背景

在美国,商业捕鱼业一直是工伤和死亡率最高的行业之一。多个组织定期收集与商业捕鱼事故相关的数据,但目前这些组织并未进行协调或自动链接数据。每个数据集都有可能生成更完整的情况,为预防工作提供信息。我们的目标是研究在无法获取个人身份识别信息的情况下,使用统计数据链接方法链接商业捕鱼事故数据的效用。

方法

在这项可行性研究中,我们使用Python记录链接工具包识别了去识别化数据集之间的真实匹配和差异。链接了来自俄勒冈州和华盛顿州的四个商业捕鱼数据集:商业捕鱼事故数据库、船只伤亡数据库、非致命伤害数据库和俄勒冈州创伤登记处。这些数据集分别涵盖了2000 - 2017年的不同日期范围,分别包含458例、524例、184例和11例。评估了几种数据链接分类器。

结果

朴素贝叶斯分类器在这些小数据集中返回的真实匹配数量最多。总共识别出41个真实匹配和8个近似匹配其中29个被确定为重复项。此外,链接突出显示了4条并非来自俄勒冈州和华盛顿州的商业捕鱼案例的记录。最佳匹配参数是日期、州、船只官方编号和船上人数。

结论

统计数据链接能够对小型去识别化的工伤和死亡数据集(如商业捕鱼中的数据集)进行准确、常规的匹配。它提供了提高现有数据记录准确性所需的信息。它还能够扩展和细化个别事件的细节,以支持职业安全研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fc/8256577/eb01bb40aa02/40621_2021_323_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验