Blum L W, Koval A, Richardson I G, Wilson L B, Malaspina D, Greeley A, Jaynes A N
Department of Astrophysical and Planetary Sciences CU Boulder Boulder CO USA.
Laboratory for Atmospheric and Space Physics CU Boulder Boulder CO USA.
Geophys Res Lett. 2021 Jun 16;48(11):e2021GL092700. doi: 10.1029/2021GL092700. Epub 2021 Jun 1.
A sequence of discrete solar wind structures within the sheath region of an interplanetary coronal mass ejection on November 6, 2015, caused a series of compressions and releases of the dayside magnetosphere. Each compression resulted in a brief adiabatic enhancement of ions (electrons) driving bursts of electromagnetic ion cyclotron (EMIC; whistler mode chorus) wave growth across the dayside magnetosphere. Fine-structured rising tones were observed in the EMIC wave bursts, resulting in nonlinear scattering of relativistic electrons in the outer radiation belt. Multipoint observations allow us to study the spatial structure and evolution of these sheath structures as they propagate Earthward from L1 as well as the spatio-temporal characteristics of the magnetospheric response. This event highlights the importance of fine-scale solar wind structure, in particular within complex sheath regions, in driving dayside phenomena within the inner magnetosphere.
2015年11月6日,行星际日冕物质抛射鞘层区域内一系列离散的太阳风结构,引发了日侧磁层的一系列压缩和释放。每次压缩都会导致离子(电子)短暂绝热增强,从而驱动日侧磁层中电磁离子回旋波(EMIC;哨声模合声)爆发式增长。在EMIC波爆发中观测到了精细结构的上升音调,导致外辐射带中相对论电子的非线性散射。多点观测使我们能够研究这些鞘层结构从L1向地球传播时的空间结构和演化,以及磁层响应的时空特征。这一事件凸显了精细尺度太阳风结构的重要性,特别是在复杂鞘层区域内,其对驱动内磁层日侧现象具有重要作用。