Suppr超能文献

基于无创肝储备和纤维化(PALBI和FIB-4)模型的列线图的开发与验证,以预测肝细胞癌患者肝切除术后B-C级肝衰竭

Development and Validation of a Nomogram Based on Noninvasive Liver Reserve and Fibrosis (PALBI and FIB-4) Model to Predict Posthepatectomy Liver Failure Grade B-C in Patients with Hepatocellular Carcinoma.

作者信息

Zhong Wenhui, Zhang Feng, Huang Kaijun, Zou Yiping, Liu Yubin

机构信息

Department of Hepatobiliary Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, Guangdong, China.

Shantou University of Medical College, Shantou 515041, China.

出版信息

J Oncol. 2021 Apr 7;2021:6665267. doi: 10.1155/2021/6665267. eCollection 2021.

Abstract

Hepatectomy is currently one of the most effective treatments for hepatocellular carcinoma (HCC). However, postoperative liver failure (PHLF) is a serious complication and the leading cause of mortality in patients with HCC after hepatectomy. This study attempted to develop a novel nomogram based on noninvasive liver reserve and fibrosis models, platelet-albumin-bilirubin grade (PALBI) and fibrosis-4 index (FIB-4), able to predict PHLF grade B-C. This was a single-centre retrospective study of 574 patients with HCC undergoing hepatectomy between 2014 and 2018. The independent risk factors of PHLF were screened using univariate and multivariate logistic regression analyses. Multivariate logistic regression was performed using the training set, and the nomogram was developed and visualised. The utility of the model was evaluated in a validation set using the receiver operating characteristic (ROC) curve. A total of 574 HCC patients were included (383 in the training set and 191 for the validation set) and included PHLF grade B-C complications of 14.8, 15.4, and 13.6%, respectively. Overall, cirrhosis ( < 0.026, OR = 2.296, 95% confidence interval (CI) 1.1.02-4.786), major hepatectomy (=0.031, OR = 2.211, 95% CI 1.077-4.542), ascites (=0.014, OR = 3.588, 95% 1.299-9.913), intraoperative blood loss ( < 0.001, OR = 4.683, 95% CI 2.281-9.616), PALBI score >-2.53 (, OR = 3.609, 95% CI 1.486-8.764), and FIB-4 score ≥1.45 ( < 0.001, OR = 5.267, 95% CI 2.077-13.351) were identified as independent risk factors associated with PHLF grade B-C in the training set. The areas under the ROC curves for the nomogram model in predicting PHLF grade B-C were significant for both the training and validation sets (0.832 vs 0.803). The proposed nomogram predicted PHLF grade B-C among patients with HCC with a better prognostic accuracy than other currently available fibrosis and noninvasive liver reserve models.

摘要

肝切除术是目前治疗肝细胞癌(HCC)最有效的方法之一。然而,术后肝衰竭(PHLF)是一种严重的并发症,也是HCC患者肝切除术后死亡的主要原因。本研究试图基于非侵入性肝储备和纤维化模型、血小板-白蛋白-胆红素分级(PALBI)和纤维化-4指数(FIB-4)开发一种新型列线图,以预测B-C级PHLF。这是一项对2014年至2018年间接受肝切除术的574例HCC患者进行的单中心回顾性研究。采用单因素和多因素逻辑回归分析筛选PHLF的独立危险因素。使用训练集进行多因素逻辑回归分析,并开发和可视化列线图。使用受试者工作特征(ROC)曲线在验证集中评估模型的效用。共纳入574例HCC患者(训练集383例,验证集191例),其中B-C级PHLF并发症分别为14.8%、15.4%和13.6%。总体而言,肝硬化(<0.026,OR = 2.296,95%置信区间(CI)1.102-4.786)、大范围肝切除术(=0.031,OR = 2.211,95%CI 1.077-4.542)、腹水(=0.014,OR = 3.588,95% 1.299-9.913)、术中失血(<0.001,OR = 4.683,95%CI 2.281-9.616)、PALBI评分>-2.53(,OR = 3.609,95%CI 1.486-8.764)和FIB-4评分≥1.45(<0.001,OR = 5.267,95%CI 2.077-13.351)被确定为训练集中与B-C级PHLF相关的独立危险因素。列线图模型预测B-C级PHLF的ROC曲线下面积在训练集和验证集中均具有显著性(0.832对0.803)。所提出的列线图在预测HCC患者的B-C级PHLF方面比目前其他可用的纤维化和非侵入性肝储备模型具有更好的预后准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5c/8221058/a6e9cd0f2c28/JO2021-6665267.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验