Suppr超能文献

颈部感知:一款用于在自由生活条件下检测进食活动的多传感器项链。

NeckSense: A Multi-Sensor Necklace for Detecting Eating Activities in Free-Living Conditions.

作者信息

Zhang Shibo, Zhao Yuqi, Nguyen Dzung Tri, Xu Runsheng, Sen Sougata, Hester Josiah, Alshurafa Nabil

机构信息

Northwestern University, United States.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Jun;4(2). doi: 10.1145/3397313.

Abstract

We present the design, implementation, and evaluation of a multi-sensor, low-power necklace, , for automatically and unobtrusively capturing fine-grained information about an individual's eating activity and eating episodes, across an entire waking day in a naturalistic setting. fuses and classifies the proximity of the necklace from the chin, the ambient light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building block of the eating activity. It then clusters the identified chewing sequences to determine eating episodes. We tested on 11 participants with and 9 participants without obesity, across two studies, where we collected more than 470 hours of data in a naturalistic setting. Our results demonstrate that enables reliable eating detection for individuals with diverse body mass index (BMI) profiles, across an entire waking day, even in free-living environments. Overall, our system achieves an F1-score of 81.6% in detecting eating episodes in an exploratory study. Moreover, our system can achieve an F1-score of 77.1% for episodes even in an all-day-long free-living setting. With more than 15.8 hours of battery life, will allow researchers and dietitians to better understand natural chewing and eating behaviors. In the future, researchers and dietitians can use to provide appropriate real-time interventions when an eating episode is detected or when problematic eating is identified.

摘要

我们展示了一款多传感器、低功耗项链的设计、实现和评估,该项链用于在自然环境中的整个清醒日自动且不引人注意地捕捉有关个人饮食活动和饮食时段的细粒度信息。该项链融合并分类来自下巴的项链接近度、环境光、前倾角度和能量信号,以确定咀嚼序列,这是饮食活动的一个组成部分。然后,它对识别出的咀嚼序列进行聚类,以确定饮食时段。我们在两项研究中对11名肥胖参与者和9名非肥胖参与者进行了测试,在自然环境中收集了超过470小时的数据。我们的结果表明,该项链能够在整个清醒日为具有不同体重指数(BMI)特征的个体实现可靠的饮食检测,即使在自由生活环境中也是如此。总体而言,我们的系统在一项探索性研究中检测饮食时段的F1分数达到了81.6%。此外,即使在全天自由生活环境中,我们的系统对饮食时段的F1分数也能达到77.1%。该项链拥有超过15.8小时的电池续航时间,将使研究人员和营养师能够更好地了解自然咀嚼和饮食行为。未来,研究人员和营养师可以在检测到饮食时段或识别出有问题的饮食时,使用该项链提供适当的实时干预。

相似文献

1
NeckSense: A Multi-Sensor Necklace for Detecting Eating Activities in Free-Living Conditions.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Jun;4(2). doi: 10.1145/3397313.
3
Eating Episode Detection with Jawbone-Mounted Inertial Sensing.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4361-4364. doi: 10.1109/EMBC44109.2020.9175949.
4
Integrated image and sensor-based food intake detection in free-living.
Sci Rep. 2024 Jan 18;14(1):1665. doi: 10.1038/s41598-024-51687-3.
5
EarBit: Using Wearable Sensors to Detect Eating Episodes in Unconstrained Environments.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017 Sep;1(3). doi: 10.1145/3130902.
6
Home-Based Monitoring of Eating in Adolescents: A Pilot Study.
Nutrients. 2021 Dec 3;13(12):4354. doi: 10.3390/nu13124354.
7
Eating Speed Measurement Using Wrist-Worn IMU Sensors Towards Free-Living Environments.
IEEE J Biomed Health Inform. 2024 Oct;28(10):5816-5828. doi: 10.1109/JBHI.2024.3422875. Epub 2024 Oct 3.
9
Enhancing Nutrition Care Through Real-Time, Sensor-Based Capture of Eating Occasions: A Scoping Review.
Front Nutr. 2022 May 2;9:852984. doi: 10.3389/fnut.2022.852984. eCollection 2022.
10
SmartAct: Energy Efficient and Real-Time Hand-to-Mouth Gesture Detection Using Wearable RGB-T.
Int Conf Wearable Implant Body Sens Netw. 2022 Sep;2022. doi: 10.1109/bsn56160.2022.9928492. Epub 2022 Nov 1.

引用本文的文献

1
Current challenges and opportunities in active and passive data collection for mobile health sensing: a scoping review.
JAMIA Open. 2025 Jul 18;8(4):ooaf025. doi: 10.1093/jamiaopen/ooaf025. eCollection 2025 Aug.
2
A Systematic Review of Sensor-Based Methods for Measurement of Eating Behavior.
Sensors (Basel). 2025 May 8;25(10):2966. doi: 10.3390/s25102966.
4
HabitSense: A Privacy-Aware, AI-Enhanced Multimodal Wearable Platform for mHealth Applications.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024 Sep;8(3). doi: 10.1145/3678591. Epub 2024 Sep 9.
5
Detecting Eating and Social Presence with All Day Wearable RGB-T.
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2023 Jun;2023:68-79. doi: 10.1145/3580252.3586974. Epub 2024 Jan 22.
6
Experience: Barriers and Opportunities of Wearables for Eating Research.
Ext Abstr Hum Factors Computing Syst. 2023 Apr;2023. doi: 10.1145/3544549.3573841. Epub 2023 Apr 19.
7
When2Trigger: Evaluation Trade-offs in Vision-based Real-Time Eating Detection Systems.
Int Conf Wearable Implant Body Sens Netw. 2024 Oct;2024. doi: 10.1109/bsn63547.2024.10780481. Epub 2024 Dec 11.
8
[Wearable devices: Perspectives on assessing and monitoring human physiological status].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1045-1052. doi: 10.7507/1001-5515.202303043.
9
Technology to Automatically Record Eating Behavior in Real Life: A Systematic Review.
Sensors (Basel). 2023 Sep 8;23(18):7757. doi: 10.3390/s23187757.
10
Rationale and design of the SenseWhy project: A passive sensing and ecological momentary assessment study on characteristics of overeating episodes.
Digit Health. 2023 Apr 27;9:20552076231158314. doi: 10.1177/20552076231158314. eCollection 2023 Jan-Dec.

本文引用的文献

1
To Mask or Not to Mask? Balancing Privacy with Visual Confirmation Utility in Activity-Oriented Wearable Cameras.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Sep;3(3). doi: 10.1145/3351230.
2
I Can't Be Myself: Effects of Wearable Cameras on the Capture of Authentic Behavior in the Wild.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2018 Sep;2(3). doi: 10.1145/3264900.
3
Automatic, wearable-based, in-field eating detection approaches for public health research: a scoping review.
NPJ Digit Med. 2020 Mar 13;3:38. doi: 10.1038/s41746-020-0246-2. eCollection 2020.
4
Counting Bites With Bits: Expert Workshop Addressing Calorie and Macronutrient Intake Monitoring.
J Med Internet Res. 2019 Dec 4;21(12):e14904. doi: 10.2196/14904.
5
EarBit: Using Wearable Sensors to Detect Eating Episodes in Unconstrained Environments.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017 Sep;1(3). doi: 10.1145/3130902.
7
Detection of chewing from piezoelectric film sensor signals using ensemble classifiers.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4929-4932. doi: 10.1109/EMBC.2016.7591833.
8
Reduction of energy intake using just-in-time feedback from a wearable sensor system.
Obesity (Silver Spring). 2017 Apr;25(4):676-681. doi: 10.1002/oby.21788. Epub 2017 Feb 24.
9
Segmentation and Characterization of Chewing Bouts by Monitoring Temporalis Muscle Using Smart Glasses With Piezoelectric Sensor.
IEEE J Biomed Health Inform. 2017 Nov;21(6):1495-1503. doi: 10.1109/JBHI.2016.2640142. Epub 2016 Dec 14.
10
A Novel Chewing Detection System Based on PPG, Audio, and Accelerometry.
IEEE J Biomed Health Inform. 2017 May;21(3):607-618. doi: 10.1109/JBHI.2016.2625271. Epub 2016 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验