Zhang Shibo, Zhao Yuqi, Nguyen Dzung Tri, Xu Runsheng, Sen Sougata, Hester Josiah, Alshurafa Nabil
Northwestern University, United States.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Jun;4(2). doi: 10.1145/3397313.
We present the design, implementation, and evaluation of a multi-sensor, low-power necklace, , for automatically and unobtrusively capturing fine-grained information about an individual's eating activity and eating episodes, across an entire waking day in a naturalistic setting. fuses and classifies the proximity of the necklace from the chin, the ambient light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building block of the eating activity. It then clusters the identified chewing sequences to determine eating episodes. We tested on 11 participants with and 9 participants without obesity, across two studies, where we collected more than 470 hours of data in a naturalistic setting. Our results demonstrate that enables reliable eating detection for individuals with diverse body mass index (BMI) profiles, across an entire waking day, even in free-living environments. Overall, our system achieves an F1-score of 81.6% in detecting eating episodes in an exploratory study. Moreover, our system can achieve an F1-score of 77.1% for episodes even in an all-day-long free-living setting. With more than 15.8 hours of battery life, will allow researchers and dietitians to better understand natural chewing and eating behaviors. In the future, researchers and dietitians can use to provide appropriate real-time interventions when an eating episode is detected or when problematic eating is identified.
我们展示了一款多传感器、低功耗项链的设计、实现和评估,该项链用于在自然环境中的整个清醒日自动且不引人注意地捕捉有关个人饮食活动和饮食时段的细粒度信息。该项链融合并分类来自下巴的项链接近度、环境光、前倾角度和能量信号,以确定咀嚼序列,这是饮食活动的一个组成部分。然后,它对识别出的咀嚼序列进行聚类,以确定饮食时段。我们在两项研究中对11名肥胖参与者和9名非肥胖参与者进行了测试,在自然环境中收集了超过470小时的数据。我们的结果表明,该项链能够在整个清醒日为具有不同体重指数(BMI)特征的个体实现可靠的饮食检测,即使在自由生活环境中也是如此。总体而言,我们的系统在一项探索性研究中检测饮食时段的F1分数达到了81.6%。此外,即使在全天自由生活环境中,我们的系统对饮食时段的F1分数也能达到77.1%。该项链拥有超过15.8小时的电池续航时间,将使研究人员和营养师能够更好地了解自然咀嚼和饮食行为。未来,研究人员和营养师可以在检测到饮食时段或识别出有问题的饮食时,使用该项链提供适当的实时干预。