Li Xiaohui, Panetier Julien A
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, USA.
Phys Chem Chem Phys. 2021 Jul 14;23(27):14940-14951. doi: 10.1039/d1cp01576a.
We have recently reported a series of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts, [MnbpyMe(Im-R)3Br]+ (R = Me, Me2, and Me4), for CO2-to-CO conversion in the presence of H2O as the proton source [J. Am. Chem. Soc., 2019, 141, 6569]. These catalysts feature slightly acidic imidazolium moieties in the secondary coordination sphere and reduce CO2 at mild electrochemical potentials. Here, we employ density functional theory (DFT) calculations to understand the electronic structure and reactivity for the CO2 reduction reaction (CO2RR) over the competing hydrogen evolution reaction (HER) using [MnbpyMe(ImMe)3Br]+ (1+). Our work indicates that, in the absence of water, the imidazolium ligand stabilizes the Mn-CO2 adduct through hydrogen bonding-like interactions, similar to the activated CO2 molecule in the C-cluster of the Ni,Fe-carbon monoxide dehydrogenase II, and assists the protonation steps during CO2RR and HER. More significantly, based on the energy span model, we demonstrate that the selectivity for CO2 fixation over proton reduction results from a higher activation energy for yielding the manganese dihydrogen intermediate before H2 release, which is the TOF determining transition state (TDTS) under an applied potential of Φ = -1.82 V versus Fc0/+. The calculated TOF also reflects the selectivity for CO2RR, which is four orders of magnitude larger than for HER, consistent with the CPE experiments that show no hydrogen was obtained. In the case of CO2 reduction, the TOF determining intermediate (TDI) corresponds to the doubly reduced active catalyst, 1C2(red2), which features a manganese(0) center that couples ferromagnetically with one unpaired electron in the π* orbital of bipyridine. On the other hand, for HER, the metal-hydride intermediate, 1C2(I11-R), is the TDI. Finally, second-order perturbation analyses imply that the strongest hydrogen bonding-like interaction at the C2 position in 1+ contributes to the higher catalytic activity with respect to [MnbpyMe(ImMe2)3Br]+ (2+) and [MnbpyMe(ImMe4)3Br]+ (3+) for CO2 fixation, consistent with the experimental data.
我们最近报道了一系列咪唑鎓功能化的锰联吡啶三羰基电催化剂,即[MnbpyMe(Im-R)3Br]+(R = Me、Me2和Me4),用于在以水作为质子源的条件下将二氧化碳转化为一氧化碳[《美国化学会志》,2019年,141卷,6569页]。这些催化剂在二级配位球中具有略带酸性的咪唑鎓部分,并在温和的电化学电位下还原二氧化碳。在此,我们采用密度泛函理论(DFT)计算,以了解使用[MnbpyMe(ImMe)3Br]+(1+)时,在竞争析氢反应(HER)过程中二氧化碳还原反应(CO2RR)的电子结构和反应活性。我们的工作表明,在无水情况下,咪唑鎓配体通过类似氢键的相互作用稳定Mn-CO2加合物,这与Ni、Fe-一氧化碳脱氢酶II的C簇中活化的CO2分子类似,并在CO2RR和HER过程中协助质子化步骤。更重要的是,基于能量跨度模型,我们证明了相对于质子还原,二氧化碳固定的选择性源于在释放H2之前生成锰二氢中间体的活化能更高,这是在相对于Fc0/+为 -1.82 V的外加电位下的转数频率(TOF)决定过渡态(TDTS)。计算得到的TOF也反映了CO2RR的选择性,其比HER的选择性大四个数量级,这与恒电位电解实验中未获得氢气的结果一致。在二氧化碳还原的情况下,TOF决定中间体(TDI)对应于双还原活性催化剂1C2(red2),其具有一个锰(0)中心,该中心与联吡啶π*轨道中的一个未成对电子铁磁耦合。另一方面,对于HER,金属氢化物中间体1C2(I11-R)是TDI。最后,二阶微扰分析表明,相对于[MnbpyMe(ImMe2)3Br]+(2+)和[MnbpyMe(ImMe4)3Br]+(3+),1+中C2位置最强的类似氢键的相互作用有助于提高二氧化碳固定的催化活性,这与实验数据一致。