Hong Wanwan, Luthra Mahika, Jakobsen Joakim B, Madsen Monica R, Castro Abril C, Hammershøj Hans Christian D, Pedersen Steen U, Balcells David, Skrydstrup Troels, Daasbjerg Kim, Nova Ainara
Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway.
ACS Catal. 2023 Feb 16;13(5):3109-3119. doi: 10.1021/acscatal.2c05951. eCollection 2023 Mar 3.
Selective reduction of CO is an efficient solution for producing nonfossil-based chemical feedstocks and simultaneously alleviating the increasing atmospheric concentration of this greenhouse gas. With this aim, molecular electrocatalysts are being extensively studied, although selectivity remains an issue. In this work, a combined experimental-computational study explores how the molecular structure of Mn-based complexes determines the dominant product in the reduction of CO to HCOOH, CO, and H. In contrast to previous Mn(bpy-R)(CO)Br catalysts containing alkyl amines in the vicinity of the Br ligand, here, we report that bpy-based macrocycles locking these amines at the side opposite to the Br ligand change the product selectivity from HCOOH to H. molecular dynamics simulations of the active species showed that free rotation of the Mn(CO) moiety allows for the approach of the protonated amine to the reactive center yielding a Mn-hydride intermediate, which is the key in the formation of H and HCOOH. Additional studies with DFT methods showed that the macrocyclic moiety hinders the insertion of CO to the metal hydride favoring the formation of H over HCOOH. Further, our results suggest that the minor CO product observed experimentally is formed when CO adds to Mn on the side opposite to the amine ligand before protonation. These results show how product selectivity can be modulated by ligand design in Mn-based catalysts, providing atomistic details that can be leveraged in the development of a fully selective system.
选择性还原一氧化碳是生产非化石基化学原料以及同时缓解这种温室气体在大气中浓度不断增加的有效解决方案。出于这一目的,分子电催化剂正在被广泛研究,尽管选择性仍然是一个问题。在这项工作中,一项结合实验与计算的研究探索了锰基配合物的分子结构如何决定一氧化碳还原为甲酸、一氧化碳和氢气时的主要产物。与之前在溴配体附近含有烷基胺的Mn(bpy-R)(CO)Br催化剂不同,在这里,我们报告称,将这些胺锁定在与溴配体相对一侧的基于联吡啶的大环改变了产物选择性,从甲酸变为氢气。活性物种的分子动力学模拟表明,Mn(CO)部分的自由旋转使得质子化胺能够接近反应中心,产生一个锰氢化物中间体,这是氢气和甲酸形成的关键。使用密度泛函理论方法的进一步研究表明,大环部分阻碍了一氧化碳插入金属氢化物,有利于氢气而非甲酸的形成。此外,我们的结果表明,实验中观察到的少量一氧化碳产物是在质子化之前一氧化碳在与胺配体相对的一侧加到锰上时形成的。这些结果展示了如何通过锰基催化剂中的配体设计来调节产物选择性,并提供了可用于开发完全选择性系统的原子细节。