Suppr超能文献

通过整数值自回归过程进行变点分析及其在一些新冠疫情数据中的应用

Change-point analysis through integer-valued autoregressive process with application to some COVID-19 data.

作者信息

Chattopadhyay Subhankar, Maiti Raju, Das Samarjit, Biswas Atanu

机构信息

Applied Statistics Unit Indian Statistical Institute Kolkata India.

Economic Research Unit Indian Statistical Institute Kolkata India.

出版信息

Stat Neerl. 2022 Feb;76(1):4-34. doi: 10.1111/stan.12251. Epub 2021 Jul 11.

Abstract

In this article, we consider the problem of change-point analysis for the count time series data through an integer-valued autoregressive process of order 1 (INAR(1)) with time-varying covariates. These types of features we observe in many real-life scenarios especially in the COVID-19 data sets, where the number of active cases over time starts falling and then again increases. In order to capture those features, we use Poisson INAR(1) process with a time-varying smoothing covariate. By using such model, we can model both the components in the active cases at time-point namely, (i) number of nonrecovery cases from the previous time-point and (ii) number of new cases at time-point . We study some theoretical properties of the proposed model along with forecasting. Some simulation studies are performed to study the effectiveness of the proposed method. Finally, we analyze two COVID-19 data sets and compare our proposed model with another PINAR(1) process which has time-varying covariate but no change-point, to demonstrate the overall performance of our proposed model.

摘要

在本文中,我们考虑通过具有时变协变量的一阶整值自回归过程(INAR(1))对计数时间序列数据进行变点分析的问题。我们在许多实际场景中观察到这类特征,特别是在COVID-19数据集中,其中活跃病例数随时间先下降然后又上升。为了捕捉这些特征,我们使用具有时变平滑协变量的泊松INAR(1)过程。通过使用这样的模型,我们可以对时间点处活跃病例中的两个组成部分进行建模,即(i)上一个时间点未康复病例的数量和(ii)时间点处新病例的数量。我们研究了所提出模型的一些理论性质以及预测。进行了一些模拟研究以研究所提出方法的有效性。最后,我们分析了两个COVID-19数据集,并将我们提出的模型与另一个具有时变协变量但无变点的PINAR(1)过程进行比较,以展示我们提出模型的整体性能。

相似文献

7
Generalized Poisson integer-valued autoregressive processes with structural changes.具有结构变化的广义泊松整数值自回归过程
J Appl Stat. 2021 Apr 15;49(11):2717-2739. doi: 10.1080/02664763.2021.1915255. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验