Suppr超能文献

基于批量和单细胞转录组学数据的分子分类学的多分辨率特征分析。

Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data.

机构信息

Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA.

Bioinformatics Program, College of Engineering, Boston University, Boston, MA 02118, USA.

出版信息

Nucleic Acids Res. 2021 Sep 27;49(17):e98. doi: 10.1093/nar/gkab552.

Abstract

As high-throughput genomics assays become more efficient and cost effective, their utilization has become standard in large-scale biomedical projects. These studies are often explorative, in that relationships between samples are not explicitly defined a priori, but rather emerge from data-driven discovery and annotation of molecular subtypes, thereby informing hypotheses and independent evaluation. Here, we present K2Taxonomer, a novel unsupervised recursive partitioning algorithm and associated R package that utilize ensemble learning to identify robust subgroups in a 'taxonomy-like' structure. K2Taxonomer was devised to accommodate different data paradigms, and is suitable for the analysis of both bulk and single-cell transcriptomics, and other '-omics', data. For each of these data types, we demonstrate the power of K2Taxonomer to discover known relationships in both simulated and human tissue data. We conclude with a practical application on breast cancer tumor infiltrating lymphocyte (TIL) single-cell profiles, in which we identified co-expression of translational machinery genes as a dominant transcriptional program shared by T cells subtypes, associated with better prognosis in breast cancer tissue bulk expression data.

摘要

随着高通量基因组学检测变得更加高效和经济实惠,其在大规模生物医学项目中的应用已经成为标准。这些研究通常是探索性的,因为样本之间的关系不是事先明确定义的,而是从数据驱动的分子亚型发现和注释中出现的,从而为假设和独立评估提供信息。在这里,我们提出了 K2Taxonomer,这是一种新颖的无监督递归分区算法和相关的 R 包,它利用集成学习在“分类学样”结构中识别稳健的亚群。K2Taxonomer 的设计旨在适应不同的数据范例,适用于批量和单细胞转录组学以及其他“组学”数据的分析。对于每种数据类型,我们都证明了 K2Taxonomer 在模拟和人类组织数据中发现已知关系的能力。我们以乳腺癌肿瘤浸润淋巴细胞 (TIL) 单细胞谱的实际应用为例结束了本文,我们确定了翻译机制基因的共表达是 T 细胞亚群共享的主要转录程序,与乳腺癌组织批量表达数据中的更好预后相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验