Suppr超能文献

通过超声检查对肾积水与肾面积之比进行深度学习定量评估小儿肾积水。

Evaluation of pediatric hydronephrosis using deep learning quantification of fluid-to-kidney-area ratio by ultrasonography.

作者信息

Lin Yingying, Khong Pek-Lan, Zou Zhiying, Cao Peng

机构信息

Diagnostic Radiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.

Ultrasound Department, Shenzhen Maternity and Child Health Care Hospital, Shengzhen, China.

出版信息

Abdom Radiol (NY). 2021 Nov;46(11):5229-5239. doi: 10.1007/s00261-021-03201-w. Epub 2021 Jul 6.

Abstract

PURPOSE

Hydronephrosis is the dilation of the pelvicalyceal system due to the urine flow obstruction in one or both kidneys. Conventionally, renal pelvis anterior-posterior diameter (APD) was used for quantifying hydronephrosis in medical images (e.g., ultrasound, CT, and functional MRI). Our study aimed to automatically detect and quantify the fluid and kidney areas on ultrasonography, using a deep learning approach.

METHODS

An attention-Unet was used to segment the kidney and the dilated pelvicalyceal system with fluid. The gold standard for diagnosing hydronephrosis was the APD > 1.0 cm. For semi-quantification, we proposed a fluid-to-kidney-area ratio measurement, i.e., [Formula: see text], as a deep learning-derived biomarker. Dice coefficient, confusion matrix, ROC curve, and Z-test were used to evaluate the model performance. Linear regression was applied to obtain the fluid-to-kidney-area ratio cutoff for detecting hydronephrosis.

RESULTS

For regional kidney segmentation, the Dice coefficients were 0.92 and 0.83 for the kidney and dilated pelvicalyceal system, respectively. The sensitivity and specificity of detecting dilated pelvicalyceal system were 0.99 and 0.83, respectively. The linear equation was fluid-to-kidney-area ratio = (0.213 ± 0.004) × APD (in cm) for 95% confidence interval on the slope with R = 0.87. The fluid-to-kidney-area ratio cutoff for detecting hydronephrosis was 0.213. The sensitivity and specificity for detecting hydronephrosis were 0.90 and 0.80, respectively.

CONCLUSION

Our study confirmed the feasibility of deep learning characterization of the kidney and fluid, showing an automatic pediatric hydronephrosis detection.

摘要

目的

肾积水是由于一侧或双侧肾脏尿液流动受阻导致肾盂肾盏系统扩张。传统上,肾盂前后径(APD)用于在医学影像(如超声、CT和功能MRI)中量化肾积水。我们的研究旨在使用深度学习方法自动检测和量化超声检查中的液体和肾脏区域。

方法

使用注意力U-Net分割肾脏和伴有液体的扩张肾盂肾盏系统。诊断肾积水的金标准是APD > 1.0 cm。为了进行半定量,我们提出了一种液体与肾脏面积比测量方法,即[公式:见原文],作为一种深度学习衍生的生物标志物。使用Dice系数、混淆矩阵、ROC曲线和Z检验来评估模型性能。应用线性回归以获得检测肾积水的液体与肾脏面积比临界值。

结果

对于区域肾脏分割,肾脏和扩张肾盂肾盏系统的Dice系数分别为0.92和0.83。检测扩张肾盂肾盏系统的敏感性和特异性分别为0.99和0.83。线性方程为液体与肾脏面积比 = (0.213 ± 0.004) × APD(以厘米为单位),斜率的95%置信区间,R = 0.87。检测肾积水的液体与肾脏面积比临界值为0.213。检测肾积水的敏感性和特异性分别为0.90和0.80。

结论

我们的研究证实了对肾脏和液体进行深度学习表征的可行性,展示了一种自动检测小儿肾积水的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验