Suppr超能文献

人工智能辅助超声在肾脏疾病中的应用:一项系统综述

Artificial intelligence-aided ultrasound in renal diseases: a systematic review.

作者信息

Liang Xiaowen, Du Meng, Chen Zhiyi

机构信息

Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.

The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.

出版信息

Quant Imaging Med Surg. 2023 Jun 1;13(6):3988-4001. doi: 10.21037/qims-22-1428. Epub 2023 Apr 20.

Abstract

BACKGROUND

The development of artificial intelligence (AI) techniques has provided a novel strategy for improving the performance of renal ultrasound. To reflect the development of AI methods in renal ultrasound, we aimed to clarify and analyze the state of AI-aided ultrasound research in renal diseases.

METHODS

PRISMA 2020 guidelines have been used to guide all processes and results. AI-aided renal ultrasound studies (for both image segmentation and disease diagnosis) published up to June 2022 were screened through the databases of PubMed and Web of Science. Accuracy/Dice similarity coefficient (DICE), the area under the curve (AUC), sensitivity/specificity, and other indications were applied as evaluation parameters. The PROBAST was used to assess the risk of bias in the studies screened.

RESULTS

Of 364 articles, 38 studies were analyzed, and could be divided into AI-aided diagnosis or prediction related studies (28/38) and image segmentation related studies (10/38). The output of these 28 studies involved differential diagnosis of local lesions, disease grading of, automatic diagnosis, and diseases prediction. The median values of accuracy and AUC were 0.88 and 0.96, respectively. Overall, 86% of the AI-aided diagnosis or prediction models were classified as high risk. An unclear source of data, inadequate sample size, inappropriate analysis methods, and lack of rigorous external validation were found to be the most frequent and critical risk factors in AI-aided renal ultrasound studies.

CONCLUSIONS

AI is a potential technique in the ultrasound diagnosis of different types of renal diseases, but the reliability and availability need to be strengthened. The use of AI-aided ultrasound in chronic kidney disease and quantitative hydronephrosis diagnosis will be a promising possibility. The size and quality of sample data, rigorous external validation, and adherence to guidelines and standards should be considered in further studies.

摘要

背景

人工智能(AI)技术的发展为提高肾脏超声检查的性能提供了一种新策略。为了反映人工智能方法在肾脏超声领域的发展情况,我们旨在阐明并分析人工智能辅助超声在肾脏疾病研究中的现状。

方法

采用PRISMA 2020指南指导所有流程和结果。通过PubMed和Web of Science数据库筛选截至2022年6月发表的人工智能辅助肾脏超声研究(包括图像分割和疾病诊断)。使用准确率/骰子相似系数(DICE)、曲线下面积(AUC)、灵敏度/特异性等指标作为评估参数。采用PROBAST评估筛选研究中的偏倚风险。

结果

在364篇文章中,分析了38项研究,可分为人工智能辅助诊断或预测相关研究(28/38)和图像分割相关研究(10/38)。这28项研究的输出涉及局部病变的鉴别诊断、疾病分级、自动诊断和疾病预测。准确率和AUC的中位数分别为0.88和0.96。总体而言,86%的人工智能辅助诊断或预测模型被归类为高风险。数据来源不明、样本量不足、分析方法不当以及缺乏严格的外部验证是人工智能辅助肾脏超声研究中最常见和关键的风险因素。

结论

人工智能是不同类型肾脏疾病超声诊断中的一项潜在技术,但可靠性和可用性需要加强。人工智能辅助超声在慢性肾脏病和定量肾积水诊断中的应用将具有广阔前景。进一步研究应考虑样本数据的规模和质量、严格的外部验证以及对指南和标准的遵循情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef05/10240007/4f50076b9376/qims-13-06-3988-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验