Suppr超能文献

基于影像组学的低剂量 CT 平扫自动检测肾积水。

Radiomics signature for automatic hydronephrosis detection in unenhanced Low-Dose CT.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.

Diagnostic and Interventional Radiology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany.

出版信息

Eur J Radiol. 2024 Oct;179:111677. doi: 10.1016/j.ejrad.2024.111677. Epub 2024 Aug 9.

Abstract

PURPOSE

To investigate the diagnostic performance of an automatic pipeline for detection of hydronephrosis on kidney's parenchyma on unenhanced low-dose CT of the abdomen.

METHODS

This retrospective study included 95 patients with confirmed unilateral hydronephrosis in an unenhanced low-dose CT of the abdomen. Data were split into training (n = 67) and test (n = 28) cohorts. Both kidneys for each case were included in further analyses, whereas the kidney without hydronephrosis was used as control. Using the training cohort, we developed a pipeline consisting of a deep-learning model for automatic segmentation (a Convolutional Neural Network based on nnU-Net architecture) of the kidney's parenchyma and a radiomics classifier to detect hydronephrosis. The models were assessed using standard classification metrics, such as area under the ROC curve (AUC), sensitivity and specificity, as well as semantic segmentation metrics, including Dice coefficient and Jaccard index.

RESULTS

Using manual segmentation of the kidney's parenchyma, hydronephrosis can be detected with an AUC of 0.84, a sensitivity of 75% and a specificity of 82%, a PPV of 81% and a NPV of 77%. Automatic kidney segmentation achieved a mean Dice score of 0.87 and 0.91 for the right and left kidney, respectively. Additionally, automatic segmentation achieved an AUC of 0.83, a sensitivity of 86%, specificity of 64%, PPV of 71%, and NPV of 82%.

CONCLUSION

Our proposed radiomics signature using automatic kidney's parenchyma segmentation allows for accurate hydronephrosis detection on unenhanced low-dose CT scans of the abdomen independently of widened renal pelvis. This method could be used in clinical routine to highlight hydronephrosis to radiologists as well as clinicians, especially in patients with concurrent parapelvic cysts and might reduce time and costs associated with diagnosing hydronephrosis.

摘要

目的

研究自动检测腹部低剂量未增强 CT 肾实质积水的管道的诊断性能。

方法

本回顾性研究纳入 95 例单侧肾积水患者的腹部低剂量未增强 CT 数据。数据分为训练集(n=67)和测试集(n=28)。对每个病例的双侧肾脏进行进一步分析,而无积水的肾脏则作为对照。使用训练集,我们开发了一个由肾实质自动分割的深度学习模型(基于 nnU-Net 架构的卷积神经网络)和一个放射组学分类器组成的管道,以检测肾积水。使用标准分类指标(如 ROC 曲线下面积(AUC)、敏感性和特异性)以及语义分割指标(如 Dice 系数和 Jaccard 指数)评估模型。

结果

使用手动分割肾实质,可以检测到肾积水,AUC 为 0.84,敏感性为 75%,特异性为 82%,PPV 为 81%,NPV 为 77%。自动肾脏分割的平均 Dice 分数分别为右肾和左肾的 0.87 和 0.91。此外,自动分割的 AUC 为 0.83,敏感性为 86%,特异性为 64%,PPV 为 71%,NPV 为 82%。

结论

我们提出的使用自动肾实质分割的放射组学特征可以在腹部低剂量未增强 CT 扫描上独立于肾盂扩张准确检测肾积水。该方法可用于临床常规,以向放射科医生和临床医生突出显示肾积水,特别是在并发肾盂旁囊肿的患者中,并且可能减少与诊断肾积水相关的时间和成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验