Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston.
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusett, USA.
Curr Opin Neurol. 2021 Aug 1;34(4):480-487. doi: 10.1097/WCO.0000000000000952.
The prevalence of new public datasets of brain-wide and single-cell transcriptome data has created new opportunities to link neuroimaging findings with genetic data. The aim of this study is to present the different methodological approaches that have been used to combine this data.
Drawing from various sources of open access data, several studies have been able to correlate neuroimaging maps with spatial distribution of brain expression. These efforts have enabled researchers to identify functional annotations of related genes, identify specific cell types related to brain phenotypes, study the expression of genes across life span and highlight the importance of selected brain genes in disease genetic networks.
New transcriptome datasets and methodological approaches complement current neuroimaging work and will be crucial to improve our understanding of the biological mechanism that underlies many neurological conditions.
新的大脑全范围和单细胞转录组数据集的出现为将神经影像学发现与遗传数据联系起来创造了新的机会。本研究旨在介绍用于结合这些数据的不同方法。
从各种公开获取数据的来源中,有几项研究能够将神经影像学图谱与大脑表达的空间分布相关联。这些努力使研究人员能够识别相关基因的功能注释,确定与大脑表型相关的特定细胞类型,研究整个生命跨度的基因表达,并强调选定的大脑基因在疾病遗传网络中的重要性。
新的转录组数据集和方法将补充当前的神经影像学工作,并将对提高我们对许多神经状况下潜在生物学机制的理解至关重要。