Suppr超能文献

原位生长在具有电子/离子通道和双活性位点的三维多孔碳结构上的硫化锂作为锂硫电池的阴极。

LiS In Situ Grown on Three-Dimensional Porous Carbon Architecture with Electron/Ion Channels and Dual Active Sites as Cathodes of Li-S Batteries.

作者信息

Yu Hao, Zeng Peng, Liu Hong, Zhou Xi, Guo Changmeng, Li Yongfang, Liu Sisi, Chen Manfang, Guo Xiaowei, Chang Baobao, Wu Tianjing, Wang Xianyou

机构信息

National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.

School of Chemistry & Material Engineering, Xinxiang College, Xinxiang 453003, Henan, China.

出版信息

ACS Appl Mater Interfaces. 2021 Jul 21;13(28):32968-32977. doi: 10.1021/acsami.1c07198. Epub 2021 Jul 6.

Abstract

LiS-based Li-S batteries are taken as promising energy storage systems due to the high theoretical specific capacity/energy density and nature of a matching Li-metal-free anode. However, the cyclic stability of the LiS-based Li-S battery is seriously prevented by the shuttle effect of lithium polysulfides (LiPSs). Meanwhile, due to the poor electrical conductivity of LiS, the Li-S battery displays slow reaction kinetics. In this work, we design 3D-porous carbon (PC) architecture as a host for inhabiting the LiPS shuttle based on physical capture. Furthermore, this porous carbon architecture is modified by introducing two kinds of heteroatoms (N and S) to form dual active sites (named as NSPC) for chemically binding LiPSs and accelerating their conversion. The polyvinyl pyrrolidone-coated LiSO·HO is embedded in the NSPC skeleton and further forms the LiS/NSPC cathode via a carbothermal reduction process. In consequence, the NSPC architecture possesses continuous electron/ion channels and abundant active sites, which are beneficial to the fast diffusion of Li and timely conversion of sulfur species. As a result, the as-prepared LiS/NSPC cathode exhibits a high initial discharge capacity of 690 mAh g at a high rate of 1C and keeps a capacity of 587 mAh g after 200 cycles with a good capacity retention rate of 85% and low fading rate of 0.075% per cycle. Therefore, this work offers a brand-new platform to understand the synergistic effects of promoting reaction kinetics for LiS-based Li-S batteries.

摘要

基于硫化锂的锂硫电池因其高理论比容量/能量密度以及与无锂金属阳极匹配的特性,被视为有前景的储能系统。然而,锂多硫化物(LiPSs)的穿梭效应严重阻碍了基于硫化锂的锂硫电池的循环稳定性。同时,由于硫化锂的电导率较差,锂硫电池表现出缓慢的反应动力学。在这项工作中,我们设计了三维多孔碳(PC)结构作为主体,基于物理捕获来抑制LiPSs的穿梭。此外,通过引入两种杂原子(N和S)对这种多孔碳结构进行改性,以形成用于化学结合LiPSs并加速其转化的双活性位点(命名为NSPC)。将聚乙烯吡咯烷酮包覆的LiSO·HO嵌入NSPC骨架中,并通过碳热还原过程进一步形成LiS/NSPC阴极。因此,NSPC结构拥有连续的电子/离子通道和丰富的活性位点,这有利于锂离子的快速扩散和硫物种的及时转化。结果,所制备的LiS/NSPC阴极在1C的高电流密度下表现出690 mAh g的高初始放电容量,在200次循环后保持587 mAh g的容量,具有85%的良好容量保持率和每循环0.075%的低衰减率。因此,这项工作为理解基于硫化锂的锂硫电池促进反应动力学的协同效应提供了一个全新的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验