Suppr超能文献

经重新利用的丝裂霉素 C 和亚胺培南与裂解噬菌体 vB_KpnM-VAC13 联合使用对肺炎克雷伯氏菌临床分离株的增强抗菌活性。

Enhanced Antibacterial Activity of Repurposed Mitomycin C and Imipenem in Combination with the Lytic Phage vB_KpnM-VAC13 against Clinical Isolates of Klebsiella pneumoniae.

机构信息

Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain.

Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain.

出版信息

Antimicrob Agents Chemother. 2021 Aug 17;65(9):e0090021. doi: 10.1128/AAC.00900-21.

Abstract

Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harboring OXA-245 β-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by optical density at 600 nm (OD) measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an infection model (Galleria mellonella). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both and The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harboring OXA-245 β-lactamase. Interestingly, the combinations decreased the emergence of resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage-mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harboring OXA-245 β-lactamase.

摘要

肺炎克雷伯菌是一种机会性革兰氏阴性病原体,它采用不同的策略(耐药性和持久性)来对抗抗生素治疗。本研究旨在寻找新的方法来对抗耐亚胺培南和持久性肺炎克雷伯菌菌株,方法是将抗癌药物丝裂霉素 C 重新用作抗菌剂,并将药物与传统抗生素亚胺培南与裂解噬菌体 vB_KpnM-VAC13 联合使用。对几种临床分离的肺炎克雷伯菌进行了特征描述,并选择了耐亚胺培南的分离株(携带 OXA-245 β-内酰胺酶)和持久性分离株进行研究。通过肉汤微量稀释法测定了两种分离株的丝裂霉素 C 和亚胺培南 MIC。通过在每种药物单独存在以及与噬菌体存在的情况下测量 600nm 处的光密度(OD)和 CFU 计数获得了时间杀伤曲线数据。还计算了每种药物和组合的耐药突变体的出现频率,并使用感染模型(大蜡螟)评估了联合治疗的效果。裂解噬菌体 vB_KpnM-VAC13 和丝裂霉素 C 对耐亚胺培南和持久性分离株均具有协同作用, 和 噬菌体-亚胺培南组合成功杀死了持久性分离株,但未杀死携带 OXA-245 β-内酰胺酶的耐亚胺培南分离株。有趣的是,组合降低了两种分离株中耐药突变体的出现。裂解噬菌体 vB_KpnM-VAC13 与丝裂霉素 C 和亚胺培南的组合对持久性肺炎克雷伯菌分离株有效。噬菌体-丝裂霉素 C 组合对携带 OXA-245 β-内酰胺酶的耐亚胺培南肺炎克雷伯菌菌株也有效。

相似文献

2
Mitomycin C as an Anti-Persister Strategy against Toxicity and Synergy Studies.
Antibiotics (Basel). 2024 Aug 28;13(9):815. doi: 10.3390/antibiotics13090815.
4
Study of Synergistic Bactericidal Activity of Dual β-Lactam Antibiotics Against KPC-2-Producing .
Microb Drug Resist. 2020 Mar;26(3):204-210. doi: 10.1089/mdr.2019.0126. Epub 2019 Sep 25.
7
Effect of Klebsiella-specific phage on multidrug-resistant Klebsiella pneumoniae- an experimental study.
Indian J Med Microbiol. 2024 Jan-Feb;47:100515. doi: 10.1016/j.ijmmb.2023.100515. Epub 2023 Nov 28.
8
In vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015-2016.
Eur J Clin Microbiol Infect Dis. 2019 Jun;38(6):1143-1150. doi: 10.1007/s10096-019-03517-y. Epub 2019 Mar 1.
9
Isolation and Characterization of vB_kpnM_17-11, a Novel Phage Efficient Against Carbapenem-Resistant .
Front Cell Infect Microbiol. 2022 Jul 5;12:897531. doi: 10.3389/fcimb.2022.897531. eCollection 2022.

引用本文的文献

1
Combined Forces Against Bacteria: Phages and Antibiotics.
Health Sci Rep. 2025 Jul 9;8(7):e70956. doi: 10.1002/hsr2.70956. eCollection 2025 Jul.
2
Current Clinical Laboratory Challenges to Widespread Adoption of Phage Therapy in the United States.
Antibiotics (Basel). 2025 May 29;14(6):553. doi: 10.3390/antibiotics14060553.
3
Combination of mitomycin C and low-dose metronidazole synergistically against infection and recurrence prevention.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0051525. doi: 10.1128/aac.00515-25. Epub 2025 Jun 17.
5
Studies and of phage therapy medical products (PTMPs) Targeting Clinical Strains of belonging to the clone ST512.
Antimicrob Agents Chemother. 2025 Jun 4;69(6):e0193524. doi: 10.1128/aac.01935-24. Epub 2025 Apr 23.
6
Antibacterial compounds against non-growing and intracellular bacteria.
NPJ Antimicrob Resist. 2025 Apr 11;3(1):25. doi: 10.1038/s44259-025-00097-0.
7
Phage-antibiotic combinations against : impact of methodological approaches on effect evaluation.
Front Microbiol. 2025 Mar 12;16:1530819. doi: 10.3389/fmicb.2025.1530819. eCollection 2025.
8
Combination therapy delays antimicrobial resistance after adaptive laboratory evolution of .
Antimicrob Agents Chemother. 2025 Apr 2;69(4):e0148324. doi: 10.1128/aac.01483-24. Epub 2025 Mar 14.
9
Eradication of Persister Cells by Eravacycline.
ACS Infect Dis. 2024 Dec 13;10(12):4127-4136. doi: 10.1021/acsinfecdis.4c00349. Epub 2024 Nov 13.
10
Mitomycin C as an Anti-Persister Strategy against Toxicity and Synergy Studies.
Antibiotics (Basel). 2024 Aug 28;13(9):815. doi: 10.3390/antibiotics13090815.

本文引用的文献

1
The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance.
Environ Microbiol. 2021 Dec;23(12):7723-7740. doi: 10.1111/1462-2920.15476. Epub 2021 Mar 27.
3
(p)ppGpp and Its Role in Bacterial Persistence: New Challenges.
Antimicrob Agents Chemother. 2020 Sep 21;64(10). doi: 10.1128/AAC.01283-20.
4
Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases.
Antibiotics (Basel). 2020 Feb 6;9(2):65. doi: 10.3390/antibiotics9020065.
5
ppGpp ribosome dimerization model for bacterial persister formation and resuscitation.
Biochem Biophys Res Commun. 2020 Mar 5;523(2):281-286. doi: 10.1016/j.bbrc.2020.01.102. Epub 2020 Jan 30.
6
Carbapenem-Resistant : Microbiology Key Points for Clinical Practice.
Int J Gen Med. 2019 Nov 28;12:437-446. doi: 10.2147/IJGM.S214305. eCollection 2019.
8
The Global Ascendency of OXA-48-Type Carbapenemases.
Clin Microbiol Rev. 2019 Nov 13;33(1). doi: 10.1128/CMR.00102-19. Print 2019 Dec 18.
10
Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo.
J Antimicrob Chemother. 2019 Nov 1;74(11):3211-3216. doi: 10.1093/jac/dkz330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验