Beckman Institute of Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States.
Department of Aerospace Engineering, University of Illinois, Urbana, Illinois 61801, United States.
J Phys Chem B. 2021 Jul 15;125(27):7537-7545. doi: 10.1021/acs.jpcb.1c03899. Epub 2021 Jul 6.
Recently presented as a rapid and eco-friendly manufacturing method for thermoset polymers and composites, frontal polymerization (FP) experiences thermo-chemical instabilities under certain conditions, leading to visible patterns and spatially dependent material properties. Through numerical analyses and experiments, we demonstrate how the front velocity, temperature, and instability in the frontal polymerization of cyclooctadiene are affected by the presence of poly(caprolactone) microparticles homogeneously mixed with the resin. The phase transformation associated with the melting of the microparticles absorbs some of the exothermic reaction energy generated by the FP, reduces the amplitude and order of the thermal instabilities, and suppresses the front velocity and temperatures. Experimental measurements validate predictions of the dependence of the front velocity and temperature on the microparticle volume fraction provided by the proposed homogenized reaction-diffusion model.
最近提出的一种快速且环保的热固性聚合物和复合材料制造方法,本体聚合(FP)在某些条件下会经历热化学不稳定性,导致可见的图案和空间相关的材料性能。通过数值分析和实验,我们展示了聚己内酯(PCL)微米粒子均匀混合在树脂中时,如何影响环辛二烯本体聚合中的前沿速度、温度和不稳定性。与微米粒子熔化相关的相转变吸收了 FP 产生的部分放热反应能量,降低了热不稳定性的幅度和阶数,并抑制了前沿速度和温度。实验测量验证了所提出的均匀反应-扩散模型对前沿速度和温度对微米粒子体积分数的依赖性的预测。